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Abstract
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1 Introduction

In the celebrated Black-Scholes-Merton model the Þrm�s stock price is assumed to follow geomet-
ric Brownian motion (GBM) � a diffusion process with constant volatility and inÞnite life time.
On one hand, this assumption precludes bankruptcy. To the contrary, modeling bankruptcy
and credit spreads is at the center of the literature on corporate bonds (see recent monographs
Bielecki and Rutkowski (2002), Duffie and Singleton (2003), Lando (2004) and Schönbucher
(2003) for a summary of the credit risk literature). On the other hand, the GBM assumption
contradicts the accumulated empirical evidence on implied volatility skews exhibited by stock
options prices. Modeling the implied volatility skew is at the center of the equity derivatives
literature (e.g., Rubinstein (1994) and Jackwerth and Rubinstein (1996)).

Until recently, the literature on stock options and the literature on corporate bonds developed
more or less independently. Recently, the two strands of literature have merged on the topic
of modeling convertible bonds, as convertible bonds are corporate bonds with embedded stock
option features. In the reduced-form framework, one speciÞes the hazard rate of bankruptcy
as a decreasing function of the underlying stock price, h = h(S). The bankruptcy event is
modeled as the Þrst jump time of a doubly stochastic Poisson process with intensity h, and
the term structure of credit spreads is determined from the speciÞcation of the intensity and
the parameters of the underlying stock price process. The negative power intensity provides a
particularly parsimonious speciÞcation:

h(S) = αS−p (1.1)

for some p > 0 and α > 0. This speciÞcation was recently employed in Andersen and Buffum
(2003), Ayache et al. (2003), Davis and Lischka (2002), Duffie and Singleton (2003, p.216),
Muromachi (1999), and Takahashi et al. (2001) in the context of modeling convertible bonds.
Muromachi (1999) empirically estimated the value of the power parameter p to be in the range
between 1.2 and 2 for Japanese bonds rated BB+ and below. In these references the convertible
bond price was determined numerically by Þnite-difference or lattice methods. The negative
power intensity model has become popular among practitioners for convertible bond modeling.
While the main focus of these references is on pricing convertible bonds, Andersen and Buffum
(2003) showed that this class of models exhibit implied volatility skews in stock option prices,
with the parameters of the hazard rate speciÞcation controlling the slope of the skew, thus
establishing a link between implied volatility skews and credit spreads (see also Hull et al.
(2004) for the linkage between credit spreads and implied volatility skews in Merton�s structural
model).

In the present paper we solve the negative power intensity model in closed form both for
corporate bonds and European-style stock options. We start in Section 2 by introducing bank-
ruptcy into the geometric Brownian motion model by killing the process at the rate h = h(S),
where h is a decreasing function of the underlying stock price. To insure that the discounted
stock price is a martingale under EMM, the hazard rate h(S) needs to be added to the drift rate
of the process (e.g., Davis and Lischka (2002)). We then discuss the pricing of equity derivatives
in this diffusion-with-killing model and show that, by Girsanov�s theorem, the risky discount
factor with the hazard rate can be removed from the valuation relationships at the expense of
modifying the drift of the underlying diffusion, thus reducing the problem to the study of the dif-
fusion process (2.3) without killing. In Section 3 we adopt the negative power speciÞcation (1.1)
and show that the valuation problem further reduces to the problem of computing expectations
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with respect to the distribution of the diffusion process X(ν) solving the linear SDE (3.4). This
process has recently been studied in the context of pricing arithmetic Asian options (see Donati-
Martin et al. (2001) and Linetsky (2004a) and references therein). Fortunately, the spectral
representation of its transition density is available in closed form (Proposition 3.3), and we are
able to compute all the necessary integrals in closed form and obtain closed-form expressions
for both corporate bonds (Proposition 3.4) and European-style stock options (Proposition 3.5).
These closed-form expressions are in the form of spectral expansions (for recent applications of
the spectral expansion method to derivatives pricing see Lewis (1998), Gorovoi and Linetsky
(2004), Linetsky (2004a-d) and references therein). In Section 4 our analytical solutions are em-
ployed to develop an economic analysis of the model. In particular, we study possible shapes and
asymptotics of the term structure of credit spreads and implied volatility skews in the negative
power intensity model, and explore the link between credit spreads and implied volatility skews.
Section 5 concludes the paper. Appendix A presents additional mathematical details on the
process X(ν) and its density p(ν) and their connections with several classical mathematical ob-
jects (Schrödinger operator with Morse potential and Maass Laplacian on the hyperbolic plane).
Appendix B discusses the close relationship of the process X(ν) to the pricing of Asian options
(Geman and Yor (1992), (1993), Donati-Martin et al. (2001), Linetsky (2004a)). Appendix C
collects the necessary facts about special functions appearing in the pricing formulas. Appendix
D contains proofs.

2 Equity Derivatives Subject to Bankruptcy in the Intensity-
Based Framework

2.1 The Stock Price Model

Let (Ω,G,P) be a complete Þltered probability space supporting a standard Brownian motion
{Bt, t ≥ 0} and an exponential random variable e ∼ Exp(1) with unit parameter independent
of B. Let h = h(x) be a non-negative function on R+ satisfying the following assumptions.

Assumption 2.1 We assume that h is C1(0,∞), strictly decreasing, and has the following
limits:

lim
x→0h(x) = +∞, lim

x→∞h(x) = 0.

We take an equivalent martingale measure (EMM) P as given and model the pre-bankruptcy
underlying stock price dynamics under the EMM as a diffusion process {St, t ≥ 0} solving the
stochastic differential equation (SDE)

dSt = (r − q + h(St))St dt+ σSt dBt, S0 = S > 0, (2.1)

where r > 0, q > 0, and σ > 0 are the risk-free interest rate, dividend yield, and pre-bankruptcy
stock price volatility, respectively. Under Assumption 2.1, the SDE (2.1) has a unique strong
non-exploding solution. This solution is a diffusion process on (0,∞) with both zero and inÞnity
unattainable boundaries. To see this, consider a process {Xt := σ−1 lnSt, t ≥ 0},

dXt = (µ+ σ
−1h(eσXt))dt+ dBt, X0 = σ−1 lnS, µ = (r − q − σ2/2)/σ.

Under Assumption 2.1, this SDE has a unique strong non-exploding solution. Strong uniqueness
up to the explosion time is insured by h ∈ C1 (e.g., Ikeda and Watanabe (1981)). Non-explosion
can be checked by applying Feller�s test for explosions (e.g., Karlin and Taylor (1981), p.234).
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We model the random time of bankruptcy τ as the Þrst time when the process
R t
0 h(Su)du is

greater or equal to the random level e (equivalently, as the Þrst jump time of a doubly-stochastic
Poisson process (Cox process) with intensity (hazard rate) ht = h(St)):

τ = inf{t ≥ 0 :
Z t

0
h(Su)du ≥ e}.

At the time of bankruptcy τ , the stock price jumps to the bankruptcy state, ∆, where it
remains forever (∆ is a cemetery state in the terminology of Markov processes; e.g., Revuz and
Yor (1999)). We assume equity holders do not receive any recovery in the event of bankruptcy
and their equity position becomes worthless. In other words, we model the stock price subject to
bankruptcy as a diffusion process {S∆t , t ≥ 0} with the state space E∆ = (0,∞)∪{∆}, diffusion
coefficient a(x) = σx, drift b(x) = (r − q + h(x))x, and killing rate h(x). In our notation,
{St, t ≥ 0} is the pre-bankruptcy stock price process (2.1), while {S∆t , t ≥ 0} is the stock price
process subject to bankruptcy, so that S∆t = St for t < τ and S

∆
t = ∆ for all t ≥ τ .

The addition of the hazard rate in the drift rate in the pre-bankruptcy dynamics (2.1)
compensates for the bankruptcy jump to insure that the total expected rate of return from the
stock is equal to the risk-free rate in the risk-neutral economy and the discounted gain process is
a martingale under EMM (e.g., Davis and Lischka (2002)). Our assumptions about the hazard
rate are intuitive. As the stock price declines towards zero, the hazard rate increases to inÞnity.
As the stock price increases, the hazard rate declines to zero, making the stock price process
asymptotically geometric Brownian motion.

To keep track of how information is revealed over time, following Elliot et al. (2000), we
introduce a bankruptcy jump indicator process {Dt, t ≥ 0}, Dt = 1{t≥τ}, denote by D = {Dt, t ≥
0} a Þltration generated by D, by F = {Ft, t ≥ 0} a Þltration generated by the Brownian motion
B, and by G = {Gt, t ≥ 0}, Gt = Ft ∨ Dt, an enlarged Þltration. The defaultable stock process
S∆ is adapted to the enlarged Þltration G.

If we identify the cemetery state ∆ = 0, then we can write the process for the stock price
subject to bankruptcy in the form

dS∆t = S
∆
t−((r − q)dt+ σdBt − dMt),

where

Mt = Dt −
Z t∧τ

0
h(Su)du,

is a martingale (compensated bankruptcy jump indicator process). Then the pre-bankruptcy
stock price process follows (2.1).

2.2 Equity Derivatives

A European-style equity derivative with maturity (expiration) at time T > 0 is deÞned by its
payoff F : E∆ → R+,

F (S∆T ) = F (S
∆
T )1{S∆T 6=∆} +R 1{S∆T =∆},

where F (S∆T )1{S∆T 6=∆} is the payoff at maturity given no bankruptcy by time T , and R = F (∆) ≥
0 is the recovery payment at maturity in the event of bankruptcy by T . The valuation of the two
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parts of the payoff at time zero is standard in the reduced-form credit risk modeling framework1

e−rTE
h
F (S∆T )1{S∆T 6=∆}

i
= e−rTE

£
F (ST )1{τ>T}

¤
= e−rTE

£
F (ST )E[1{τ>T}|FT ]

¤
= e−rTE

h
e−

R T
0 h(St)dtF (ST )

i
,

and
e−rTE

h
R 1{S∆T =∆}

i
= e−rTE

£
R 1{τ≤T}

¤
= e−rTR

¡
1− E £1{τ>T}¤¢

= e−rTR
¡
1− E £E[1{τ>T}|FT ]¤¢ = e−rTR³1− E he− R T0 h(St)dt

i´
,

where we used the fact that
E
£
1{τ>T}|FT

¤
= e−

R T
0 h(St)dt

(recall that {Ft, t ≥ 0} is the Þltration generated by the Brownian motion B). These valuations
reduce to computing expectations of the form

Vψ(S, T ) = e
−rTE

h
e−

R T
0 h(St)dtψ(ST )

i
.

This can be interpreted as pricing a claim with payoff ψ(ST ) at T > 0 in a Þctitious economy
with the risk-free interest rate process rt = r+h(St), stock price process (2.1) and no bankruptcy.
The discount factor with h can be removed by changing the probability measure.

Proposition 2.1

Vψ(S, T ) = e
−rTE

h
e−

R T
0 h(St)dtψ(ST )

i
= e−qTS bE £S−1T ψ(ST )

¤
, (2.2)

where bE is the expectation with respect to the probability measure bP under which bBt := Bt − σt
is a standard Brownian motion and

dSt = (r − q + σ2 + h(St))St dt+ σSt d bBt, S0 = S > 0. (2.3)

Proof. From Eq.(2.1) we have

St = S e
(r−q)t+R t0 h(Su)du+σBt− 1

2
σ2t, t ≥ 0,

and, hence,

e−rTE
h
e−

R T
0 h(St)dtψ(ST )

i
= e−qTS E

h
eσBT−

1
2
σ2TS−1T ψ(ST )

i
.

Application of Girsanov�s theorem completes the proof. 2

In particular, for Þxed T > 0, we will be interested in a zero-coupon bond with unit face
value and constant recovery payment 0 ≤ R < 1 at maturity, a call option with strike K > 0
with the payoff (ST −K)+ at expiration and no recovery if the Þrm goes bankrupt, and a put

1See Duffie et al. (1996), Duffie and Singleton (1999), Jarrow and Turnbull (1995), Jarrow et al. (1997),
and Madan and Unal (1998), as well as recent monographs Bielecki and Rutkowski (2002), Duffie and Singleton
(2003), Jeanblanc et al. (2005, Chapter 7), Lando (2004), and Schönbucher (2003). For the PDE approach to the
pricing of equity derivatives with the hazard rate dependent on the underlying stock price see Carr and Javaheri
(2004).
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option with strike K > 0 with the payoff (K − ST )+ if τ > T and recovery payment R = K at
expiration in the event of bankruptcy τ ≤ T (note that we decompose the put payoff into two
parts: (K − ST )+1{τ>T}+K1{τ≤T}). Using Proposition 2.1, the pricing formulas for the bond,
call, and put take the form

BR(S, T ) = e
−rTR+ (1−R)e−qTS bE £S−1T ¤

,

CK(S, T ) = e
−qTS bE h¡1−KS−1T ¢+i

,

PK(S, T ) = e
−qTS bE h¡KS−1T − 1¢+i+K ³e−rT − e−qTS bE £S−1T ¤´

, (2.4)

respectively. In particular, the put-call parity is satisÞed

CK(S, T )− PK(S, T ) = e−qTS − e−rTK. (2.5)

One notes that the put pricing formula (2.4) consists of two parts: the present value of the put
payoff given no bankruptcy,

e−qTS bE h¡KS−1T − 1¢+i , (2.6)

and the present value of the recovery in the event of bankruptcy,

K(e−rT −B(S, T )), (2.7)

where
B(S, T ) = e−rTP(τ > T ) = e−qTS bE £S−1T ¤

(2.8)

is the price of the T -maturity zero-coupon bond with unit face value and zero recovery (the
subscript 0 in B0(S, T ) will be dropped for zero-recovery bonds) and P(τ > T ) is the (risk-
neutral) probability of surviving beyond time T (survival probability). The recovery part of the
put option is termed a bankruptcy claim by Lewis (1998) in the context of Merton�s model with
constant dividend rate, where the bankruptcy occurs when the stock price process hits zero.

3 Analytical Solution for the Negative Power Intensity Model

3.1 The Negative Power Intensity Model

A parsimonious speciÞcation for the hazard rate satisfying Assumption 2.1 is

h(S) = αS−p, α > 0, p > 0. (3.1)

This speciÞcation was employed in Andersen and Buffum (2003), Ayache et al. (2003), Davis
and Lischka (2002), Duffie and Singleton (2003, p.216), Muromachi (1999), and Takahashi et
al. (2001) in the context of modeling convertible bonds. Muromachi (1999) estimated the value
of the power parameter p to be in the range between 1.2 and 2 for Japanese bonds rated BB+
and below. In these references the convertible bond price was determined numerically by Þnite-
difference or lattice methods. The negative power intensity model (3.1) has become popular
among practitioners for convertible bond modeling. In the present paper we solve the model
both for corporate bonds and European-style stock options in closed form.
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We are interested in calculating expectations (2.2) under the process (2.3) with h given by
(3.1). First, introduce a new process {Zt = βSpt , t ≥ 0}, where β = pσ2/(4α). From Ito�s
formula, it solves the linear SDE

dZt = (aZt + b)dt+ cZtdBt, Z0 = z = βS
p, (3.2)

with parameters

a = p(r − q + (p+ 1)σ2/2) ∈ R, b = p2σ2/4 > 0, c = pσ > 0.

This linear SDE has a well-known solution (e.g., Karatzas and Shreve (1991), pp.360-1)

Zt = e
(a−c2/2)t+cBt

µ
z + b

Z t

0
e−(a−c

2/2)u−cBudu
¶
, t ≥ 0.

Using the Brownian scaling property cBt
(law)
= 2Bc2t/4, we can effect a time change so that

Zt = X
(ν)
τ(t), τ(t) = p

2σ2t/4,

where X(ν) is the standardized process

X
(ν)
t = e2(νt+Bt)

µ
z +

Z t

0
e−2(νu+Bu)du

¶
, t ≥ 0, with ν = 2

pσ2

µ
r − q + σ

2

2

¶
, (3.3)

solving the standardized linear SDE2

dX
(ν)
t = (2(ν + 1)X

(ν)
t + 1)dt+ 2X

(ν)
t dBt, X

(ν)
0 = x = z = βSp. (3.4)

Thus, the valuation equation (2.2) is reduced to

Vψ(S, T ) = e
−qTSE(ν)x [χψ(X

(ν)
τ )], x = βSp, β = pσ2/(4α), τ = p2σ2T/4, (3.5)

where the expectation E
(ν)
x is with respect to the law of the process X(ν) started at x and

χψ(y) := (y/β)
−1/pψ((y/β)1/p). (3.6)

3.2 The Process X(ν), its Resolvent Kernel and Transition Density

In this Section we review the properties of the diffusion process X(ν).

Proposition 3.1 The boundary at zero is entrance for all ν ∈ R. The boundary at inÞnity is
natural for all ν ∈ R. For ν > 0 it is attracting and the process is transient. For ν ≤ 0 it is
non-attracting. For ν < 0 the process is positive recurrent and possesses a stationary distribution
with the density

π(x) =
2ν

Γ(−ν)x
ν−1e−

1
2x . (3.7)

2We note that this SDE was derived by Shiryaev (1961) in the context of quickest detection problems (see
Peskir (2004)).
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Proof. The scale and speed densities of X(ν) are (see, e.g., Borodin and Salminen (2002, p.17)
for scale and speed densities of one-dimensional diffusions)

s(x) = x−ν−1e
1
2x , m(x) =

1

2
xν−1e−

1
2x . (3.8)

The nature of the boundaries at zero and inÞnity are established by applying Feller�s boundary
classiÞcation criteria based on the behavior of the scale and speed densities (Borodin and Salmi-
nen (2002), pp.14-15). For ν < 0 the speed measure is Þnite,

R∞
0 m(x)dx <∞, and, hence, the

process is positive recurrent with the stationary density given by the normalized speed density
(Borodin and Salminen (2002), pp.20-21).2

Let p(ν)(t;x, y) be the transition density of X(ν) and, for s > 0, G
(ν)
s (x, y) its Laplace transform

in time (also called resolvent kernel or Green�s function, e.g., Borodin and Salminen (2002),
pp.19-20)3

G(ν)s (x, y) =

Z ∞

0
e−stp(ν)(t; x, y)dt. (3.9)

Proposition 3.2 For x, y > 0, the resolvent kernel is given by (x ∧ y := min{x, y}, x ∨ y :=
max{x, y}):

G(ν)s (x, y) = Γ
³
µ(s) +

ν

2

´³y
x

´ ν−1
2
e
1
4x
− 1
4yM 1−ν

2
,µ(s)

µ
1

2(x ∨ y)
¶
W 1−ν

2
,µ(s)

µ
1

2(x ∧ y)
¶
, (3.10)

where

µ(s) =
1

2

p
2s+ ν2, (3.11)

Γ(z) is the Gamma function, and Mκ,µ(z) and Wκ,µ(z) are the Whittaker functions (C.2) and
(C.3). For x = 0 the Green�s function reduces to

G(ν)s (0, y) = Γ
³
µ(s) +

ν

2

´
(2y)

ν−1
2 e

− 1
4yM 1−ν

2
,µ(s)

µ
1

2y

¶
.

Proof. See Appendix D.2

Remark 3.1. This Green�s function was obtained by Donati-Martin et al. (2001, Theorem
3.1) by solving the differential equation. The transition density is recovered by inverting the
Laplace transform. This produces the spectral representation for the transition density (see
McKean (1956) and Ito and McKean (1974, Section 4.11) for the spectral representation of the
transition density of a one-dimensional diffusion and Linetsky (2004b) and references therein for
applications in Þnance).

Proposition 3.3 For x, y > 0 and ν ∈ R, the transition density has the following spectral
representation

p(ν)(t; x, y) = 1{ν<0}π(y) (3.12)

3Note that our Green�s function and transition density are deÞned with respect to the Lebesgue measure,
while Borodin and Salminen�s are deÞned with respect to the speed measure and, thus, our Green�s function and
transition density differ from Borodin and Salminen�s by a factor m(y).
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+1{ν<−2}
[|ν|/2]X
n=1

e−2n(|ν|−n)t
2(|ν|− 2n)n!
Γ(1 + |ν|− n)e

− 1
2y (2x)n(2y)n−1−|ν|L(|ν|−2n)n

µ
1

2x

¶
L(|ν|−2n)n

µ
1

2y

¶

+
1

2π2

Z ∞

0
e−

(ν2+ρ2)t
2 e

1
4x
− 1
4y

³y
x

´ ν−1
2
W 1−ν

2
, iρ
2

µ
1

2x

¶
W 1−ν

2
, iρ
2

µ
1

2y

¶ ¯̄̄̄
Γ

µ
ν + iρ

2

¶¯̄̄̄2
sinh(πρ)ρdρ,

where L
(α)
n (x) are the generalized Laguerre polynomials, [x] denotes the integer part of x, and

1{·} is the indicator. When x = 0, y > 0, and ν ∈ R,

p(ν)(t; 0, y) =
1

2π2

Z ∞

0
e−

(ν2+ρ2)t
2 e−

1
4y (2y)

ν−1
2 W 1−ν

2
, iρ
2

µ
1

2y

¶ ¯̄̄̄
Γ

µ
ν + iρ

2

¶¯̄̄̄2
sinh(πρ)ρdρ

+1{ν<0}π(y) + 1{ν<−2}
[|ν|/2]X
n=1

e−2n(|ν|−n)t
(−1)n2(|ν|− 2n)
Γ(1 + |ν|− n) e

− 1
2y (2y)n−1−|ν|L(|ν|−2n)n

µ
1

2y

¶
.

Proof. See Appendix D. 2

Remark 3.2. The density in Proposition 3.3 has a long history and is closely related to a
number of classical mathematical objects. For ν < 0 this density was Þrst obtained by Wong
(1964, p.271, Eq.38) in his studies of diffusions with stationary densities in the Pearson family.
See Comtet et al. (1998), Linetsky (2004a) and Appendix A and B for details. In Appendix D
we provide a proof for all ν ∈ R.

Remark 3.3. Because the boundary at zero is entrance, the process can be started at zero

and G
(ν)
s (0, y) and p(ν)(t; 0, y) exist. In the application to Asian options the process is started

at zero (see Appendix B). In the present application to equity derivatives subject to bankruptcy
the process is started at a positive value x = βSp > 0.

Remark 3.4. For ν ≥ 0 the spectrum of the inÞnitesimal generator

G(ν) = 2x2 d
2

dx2
+ (2(ν + 1) + 1)

d

dx

of X(ν) in the Hilbert space of functions square-integrable with the speed density m in Eq.(3.8)
is purely continuous (the integral term in the spectral expansion (3.12)). For ν < 0 there is some
non-empty discrete spectrum that contains at least the zero principal eigenvalue. The term in
the spectral expansion (3.12) corresponding to the zero principal eigenvalue is the stationary
density π (3.7). The spectral expansion for the transition density can be obtained by directly
inverting the Laplace transform of the resolvent kernel using the Cauchy Residue Theorem. The
resolvent kernel (3.10) needs to be considered in the complex s-plane. The poles of the resolvent
kernel (the poles of the Gamma function in Eq.(3.10) for ν < 0) give the eigenvalues, and the
integral along the branch cut {s = −ν2/2−ρ2/2, ρ ∈ [0,∞)} produces the continuous part of the
spectral expansion. See Appendix D for this approach. Alternatively, the spectral expansion can
be obtained by employing the real-variable approach by Þrst considering a truncated spectral
problem on [0, b] for some b > 0 with the Dirichlet boundary condition at b and purely discrete
spectrum, and then passing to the limit b→∞ (this approach is detailed in Linetsky (2004a)).
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3.3 Pricing L2 Payoffs

We now apply the spectral representation to the valuation problem (3.5). LetH := L2((0,∞),m)
be the Hilbert space of functions square-integrable with the speed density m in Eq.(3.8) and
endowed with the inner product

(f, g)m =

Z ∞

0
f (x)g(x)m(x)dx.

For any ψ such that χψ ∈ H (χψ is deÞned in (3.6)), the valuation (3.5) has the spectral
representation

eqTS−1Vψ(S, T ) =
1

2π2

Z ∞

0
e−

(ν2+ρ2)τ
2 Cψ(ρ)x

1−ν
2 e

1
4xW 1−ν

2
, iρ
2

µ
1

2x

¶ ¯̄̄̄
Γ

µ
ν + iρ

2

¶¯̄̄̄2
sinh(πρ)ρdρ

+1{ν<0}cψ(0) + 1{ν<−2}
[|ν|/2]X
n=1

cψ(n)e
−2n(|ν|−n)τ 2(|ν|− 2n)n!

Γ(1 + |ν|− n)(2x)
nL(|ν|−2n)n

µ
1

2x

¶
, (3.13)

where the expansion coefficients are given by

Cψ(ρ) =

Z ∞

0
y
ν−1
2 e

− 1
4yW 1−ν

2
, iρ
2

µ
1

2y

¶
χψ(y)dy, (3.14)

cψ(0) =

Z ∞

0
χψ(y)π(y)dy, cψ(n) =

Z ∞

0
(2y)n−|ν|−1 e−

1
2yL(|ν|−2n)n

µ
1

2y

¶
χψ(y)dy. (3.15)

For details of the spectral expansion approach to derivatives pricing see Linetsky (2004b) and
references therein.

3.4 Pricing Bonds

First consider the case ν < 2/p (from Eq.(3.3) this condition is equivalent to r − q − σ2/2 <
0). Bond payoff ψbond(x) = 1 is such that χψ ∈ H, and the spectral representation (3.13) is
applicable. Fortunately, in this case the integrals in Eqs.(3.14) and (3.15) can be calculated in
closed form.

The case ν ≥ 2/p (equivalently, r − q − σ2/2 ≥ 0) is more involved. For the bond payoff
ψbond(x) = 1, χψ(x) = (x/β)

−1/p /∈ H and, hence, the spectral representation (3.13) cannot be
applied. The alternative is to Þrst compute the Laplace transform

Φ(ν)s (x) :=

Z ∞

0
e−sτE(ν)x [(X(ν)

τ /β)−1/p]dτ =
Z ∞

0
(y/β)−1/pG(ν)s (x, y)dy (3.16)

with the kernel (3.10) and then do the Laplace inversion, choosing the contour of integration

in the Bromwich complex Laplace inversion formula to the right of any singularities of Φ
(ν)
s (x)

in the complex s-plane. In this case the function Φ
(ν)
s (x) has an additional pole in addition

to the singularities inherited from the Green�s function G
(ν)
s (x, y), resulting in an additional

positive term in the pricing formula for ν > 2/p (this phenomenon for non-L2 payoffs has been
Þrst discussed in Lewis (1998)). The interpretation of this additional term as the discounted
probability of the Þrm asymptotically escaping to large stock price values and ultimately avoiding
bankruptcy is provided in Section 4.
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Proposition 3.4 The pricing function (2.8) for the zero-coupon bond with unit face value and
no recovery is given by

B(S, T ) = 1{ν>2/p}e−rT
Γ(ν − 1/p)
Γ(ν − 2/p)U

µ
1

p
,
2

p
− ν + 1, 1

2x

¶
+ 1{ν<0}e−qT

Γ(1/p− ν)
Γ(−ν) (2x)

1
p

+1{ν<−2}e−qT
[|ν|/2]X
n=1

e−2n(|ν|−n)τ
(|ν|− 2n)Γ(−1/p)Γ(1/p+ |ν|− n)
Γ(1 + |ν|− n)Γ(1− 1/p− n) (2x)

1
p
+n
L(|ν|−2n)n

µ
1

2x

¶

+
e−qT

4π2Γ(1/p)

Z ∞

0
e−

(ν2+ρ2)τ
2 (2x)

1
p
+ 1−ν

2 e
1
4xW 1−ν

2
, iρ
2

µ
1

2x

¶ ¯̄̄̄
Γ

µ
ν + iρ

2

¶
Γ

µ
1

p
− ν + iρ

2

¶¯̄̄̄2
sinh(πρ)ρ dρ,

where U(a, b, z) is the second conßuent hypergeometric function (see Appendix C).

Proof. See Appendix D.2

3.5 Pricing Options

The put payoff ψ(x) = (K − x)+ is such that χψ ∈ H for all ν ∈ R and, hence, the valuation of
the put payoff given no bankruptcy (2.6) follows from the spectral expansion (3.13). Fortunately,
the integrals in the expressions for the expansion coefficients (3.14) and (3.15) can be computed
in closed form. The recovery part (bankruptcy claim) value (2.7) follows from the bond valuation
in Proposition 3.4.

Proposition 3.5 DeÞne k = βKp. The put pricing function (2.4) is given by

PK(S, T ) = e
−rTK − 1{ν>2/p}e−rTK

Γ(ν − 1/p)
Γ(ν − 2/p)U

µ
1

p
,
2

p
− ν + 1, 1

2x

¶
−1{ν<0}

e−qTS
Γ(|ν|)

∙
Γ

µ
|ν|, 1

2k

¶
+ (2k)

1
pγ

µ
1

p
+ |ν|, 1

2k

¶¸

−1{ν<−2}e−qTS
[|ν|/2]X
n=1

pK(n)e
−2n(|ν|−n)τ 2(|ν|− 2n)n!

Γ(1 + |ν|− n) (2x)
nL(|ν|−2n)n

µ
1

2x

¶

−e−qTS 1

2π2

Z ∞

0
PK(ρ)e

− (ν2+ρ2)τ
2 x

1−ν
2 e

1
4xW 1−ν

2
, iρ
2

µ
1

2x

¶ ¯̄̄̄
Γ

µ
ν + iρ

2

¶¯̄̄̄2
sinh(πρ)ρdρ,

where

PK(ρ) = k
1+ν
2 e−

1
4kW− 1+ν

2
, iρ
2

µ
1

2k

¶
+2<

(
(2k)

ν−iρ
2 (2/p− ν − iρ)Γ (−iρ)

Γ(ν/2− iρ/2)(ρ2 + (ν − 2/p)2) 2F2
∙
1

p
− ν
2
+
iρ

2
, 1− ν

2
+
iρ

2
; 1 + iρ,

1

p
− ν
2
+
iρ

2
+ 1;− 1

2k

¸)
,

pK(n) = − 1

2n
(2k)n−|ν|e−

1
2kL

(|ν|−2n)
n−1

µ
1

2k

¶
+

Γ(|ν|− n+ 1)(2k)n−|ν|
2(|ν|− n+ 1/p)n!Γ(|ν|− 2n+ 1) 2F2

∙
|ν|− n+ 1, |ν|− n+ 1

p
; |ν|− 2n+ 1, |ν|− n+ 1 + 1

p
;− 1

2k

¸
,

and 2F2[a1, a2; b1, b2; z] is the hypergeometric function given in (C.13), γ(a, x) =
R x
0 z

a−1e−zdz
is the incomplete Gamma function, Γ(a, x) =

R∞
x za−1e−zdz is the complementary incomplete

Gamma function, and <(z) ≡ (z + z̄)/2 denotes the real part of a complex number z.
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Proof. See Appendix D.2

The call payoff ψcall(x) = (x − K)+ is such that χψ ∈ H for ν < 0 but χψ /∈ H for ν ≥ 0.
Nevertheless, we can use the put-call parity (2.5) to recover the call pricing function CK(S, T )
for all ν ∈ R.

4 Economic Analysis of the Model: Credit Spreads and Implied
Volatility Skews

Assuming the unit face value T -maturity zero-coupon bond recovers nothing in the event of
bankruptcy (R = 0), the T -maturity credit spread is deÞned as usual

S(S, T ) = − 1
T
lnB(S, T )− r.

For small T , asymptotically we have

S(S, T ) ∼ h(S) as T → 0.

To investigate the long maturity asymptotics of the term structure of credit spreads, deÞne the
asymptotic credit spread

S∞ := lim
T→∞

S(S, T ).
There are three distinct cases depending on the relationship among the risk-free rate, dividend
yield and volatility.

(i) When |r − q| ≤ σ2/2 (0 ≤ ν ≤ 2/p), the spectrum is purely continuous, the bond
pricing function in Proposition 3.4 contains only the integral term, and we have (recall that
τ = p2σ2T/4)

S∞ = q − r + ν
2p2σ2

8
=

1

2σ2

µ
r − q − σ

2

2

¶2
.

For large T , the term structure of credit spreads ßattens out towards the asymptotic spread
S∞ = (r − q − σ2/2)2/(2σ2) ∈ [0,σ2/2]. Note that it depends only on r, q and σ, and not on
the hazard rate parameters α and p.

(ii) When the dividend yield is sufficiently large so that q > r + σ2/2 (ν < 0), there is some
non-empty discrete spectrum containing at least the zero principal eigenvalue that contributes
the leading term in the spectral expansion of the bond pricing function, and

S∞ = q − r.
For large T , the term structure of credit spreads ßattens out towards the asymptotic spread
S∞ = q − r > σ2/2. In this case it depends only on r and q.

(iii) When the risk-free rate is sufficiently large so that r > q + σ2/2 (ν > 2/p), the bond
pricing function contains an additional term

e−rT
Γ(ν − 1/p)
Γ(ν − 2/p)U

µ
1

p
,
2

p
− ν + 1, 1

2x

¶
and

S∞ = 0.
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In this case, asymptotically the term structure of credit spreads declines to zero for long ma-
turities. To understand this behavior, consider the process (2.1). For large values of the stock
price, the process behaves asymptotically as geometric Brownian motion. The natural boundary
at inÞnity is attracting when r − q − σ2/2 > 0. For r − q − σ2/2 > 0, there is thus a positive
probability that the stock price process asymptotically escapes to large values and the Þrm never
goes bankrupt:

P( lim
t→∞S

∆
t =∞|S0 = S) > 0.

We can calculate this probability directly.

Proposition 4.1 For ν > 2/p (equivalently, r − q − σ2/2 > 0) and S > 0,

P( lim
t→∞S

∆
t =∞|S0 = S) =

Γ(ν − 1/p)
Γ(ν − 2/p)U

µ
1

p
,
2

p
− ν + 1, 1

2x

¶
Proof. See Appendix D. 2

For the bond price, we have the large-T asymptotics

B(S, T ) ∼ e−rTP( lim
t→∞S

∆
t =∞|S0 = S) as T →∞.

Therefore, the additional term in the bond pricing function B(S, T ) for ν > 2/p is the discounted
probability of the Þrm asymptotically escaping to large stock price values and ultimately avoiding
bankruptcy.

We now investigate the possible shapes of the term structure of credit spreads. It is conve-
nient to parameterize the hazard rate as follows:

h(S) = h∗
µ
S∗

S

¶p
,

where S∗ > 0 is some reference stock price level and h∗ > 0 is the hazard rate at that reference
level, h(S∗) = h∗, so that h∗ serves as the scale parameter. To calibrate the model in applications,
one typically selects S∗ = S0, the initial stock price at the time of calibration.

Figures 1-3 illustrate the shapes of the term structure of credit spreads for the three cases
considered above.4 Volatility is Þxed at 30% (σ = 0.3). Figure 1 gives an example of the Þrst
case. The risk-free rate and the dividend yield are both equal to 3% (r = q = 0.03). In this
case |r − q| ≤ σ2/2 and the asymptotic spread is S∞ = 0.01125. Figure 1 plots four curves
corresponding to the four choices of the hazard rate parameter p = 0.5, 1, 2, 3 with h∗ = 0.03
and S∗ = 50. For these parameter values, the term structure has a humped shape, Þrst upward
slopping and then slowly downward slopping towards the asymptotic yield.

Figure 2 gives an example of the second case with r = 0.02 and q = 0.07. In this case
q > r+ σ2/2 and the asymptotic spread is S∞ = 0.05. Figure 2 plots four curves corresponding
to the four choices of the hazard rate parameter p = 0.5, 1, 2, 3 with h∗ = 0.03 and S∗ = 50. The
terms structures are upward slopping, have a hump, and then decline towards the asymptotic
spread of 5%, which is much larger than in Figure 1 since the dividend yield is q > r + σ2/2.

4For all numerical computations in this paper we used Mathematica 4.0 software package running on a PC.
All required special functions are available in Mathematica as standard built-in functions. The single integral
with respect to the spectral parameter ρ in the valuation formulas was computed using the built-in numerical
integration routine in Mathematica.
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Term Structure of Credit Spreads 
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Figure 1: Term Structure of Credit Spreads. Parameter values: S = S∗ = 50, σ = 0.3,
r = q = 0.03, h∗ = 0.03, p = 0.5, 1, 2, 3.
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Term Structure of Credit Spreads 
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Figure 2: Term Structure of Credit Spreads. Parameter values: S = S∗ = 50, σ = 0.3,
r = 0.02, q = 0.07, h∗ = 0.03, p = 0.5, 1, 2, 3.
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Term Structure of Credit Spreads 
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Figure 3: Term Structure of Credit Spreads. Parameter values: S = S∗ = 50, σ = 0.3,
r = 0.07, q = 0, h∗ = 0.03, p = 0.5, 1, 2, 3.
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Figure 4: Probability of avoiding bankruptcy as a function of the initial stock price,
u(S) = P(limt→∞ S∆t = ∞|S0 = S). Parameter values: S∗ = 50, σ = 0.3, r = 0.07, q = 0,
h∗ = 0.03, p = 0.5, 1, 2, 3 (the lower curve corresponds to p = 0.5, the upper curve corresponds
to p = 3).
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Implied Volatility 
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Figure 5: Implied Volatilities for Times to Expiration T = 0.25, 0.5, 1, 5. Parameter
values: S = S∗ = 50, σ = 0.3, r = q = 0.03, h∗ = 0.03, p = 2.
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Implied Volatility 
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Figure 6: Implied Volatilities for Times to Expiration T = 0.25, 0.5, 1, 5. Parameter
values: S = S∗ = 50, σ = 0.3, r = q = 0.03, h∗ = 0.06, p = 2.
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Figure 3 gives an example of the third case with r = 0.07 and q = 0. In this case r > q+σ2/2
and the asymptotic spread is S∞ = 0. Figure 3 plots four curves corresponding to the four choices
of the hazard rate parameter p = 0.5, 1, 2, 3 with h∗ = 0.03 and S∗ = 50. The terms structures
are downward slopping towards zero. The term structures with p = 2 and 3 have an initial
hump. To further illustrate this case, Figure 4 plots the probability of the Þrm escaping to the
high stock price values and ultimately avoiding bankruptcy as a function of the initial stock
price, u(S) = P(limt→∞ S∆t = ∞|S0 = S). Note that this probability increases with p. Since r
is large and q = 0, the stock price tends to appreciate. For larger values of p, the hazard rate
falls off more quickly as the stock price increases, thus increasing the probability of avoiding
bankruptcy.

Figure 5 plots the option implied volatility against the strike price of the option in the model
with S∗ = 50, σ = 0.3, r = q = 0.03, h∗ = 0.03 and p = 2 for expirations of 3 months, 6 months,
1 and 5 years (these implied volatility curves correspond to the term structure of credit spreads
in Figure 1 with p = 2). The implied volatilities are obtained by Þrst computing the put pricing
formula of Proposition 3.5 for a given strike and expiration and then implying the Black-Scholes
implied volatility. The current stock price is S = 50. For higher strikes, the implied volatility
asymptotically decreases towards σ = 0.3, as the hazard rate vanishes and the process becomes
asymptotically geometric Brownian motion as the stock price increases. For lower strike prices,
we observe the characteristic implied volatility skew with implied volatilities increasing for lower
strikes, as the hazard rate increases as the stock price declines. Moreover, shorter expirations
exhibit steeper skews and the skews gradually ßatten out for longer maturities. For larger values
of p, the skew is steeper for out-of-the-money puts, since the hazard rate increases more rapidly
as the stock price declines. On the other hand, for larger p, implied volatilities approach the
bankruptcy-free volatility σ more rapidly for out-of-the-money calls, as the hazard rate falls off
more rapidly as the stock price increases. For smaller p, the skew is ßatter, but declines towards
the bankruptcy-free σ slower.

Figure 6 plots implied volatility skews for the case with h∗ = 0.06. We observe that as
the hazard rate parameter h∗ increases, the skews become steeper. We thus have a clear link
between the hazard rate of bankruptcy and resulting credit spreads and option implied volatility
skews. Increasing probability of bankruptcy of the underlying Þrm increases both credit spreads
on corporate bonds and implied volatility skews in stock options.

5 Conclusion

In this paper we have solved in closed form a parsimonious extension of the Black-Scholes-Merton
model with bankruptcy where the hazard rate of bankruptcy is a negative power of the stock
price. By combining a scale change and a measure change, we reduced the model dynamics to
a linear stochastic differential equation whose solution is a diffusion process that has played a
central role in the pricing of Asian options. The solution is in the form of a spectral expansion
associated with the diffusion inÞnitesimal generator. Pricing formulas for both corporate bonds
and stock options are obtained in closed form. Term credit spreads on corporate bonds and
implied volatility skews of stock options are closely linked in this model, with parameters of
the hazard rate speciÞcation controlling both the shape of the term structure of credit spreads
and the slope of the implied volatility skew. The results of our analysis provide further insights
into the linkage between corporate credit spreads and volatility skews in stock options. Our
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analytical formulas are easy to implement and, it is hoped, will prove useful to researchers and
practitioners in corporate debt, equity derivatives and credit derivatives markets.

To conclude, we note that credit risk is not the only cause of implied volatility skews in
equity options. Stochastic local volatility σ that is negatively correlated with the stock price
process will further contribute to the steepening of the skew. In this paper we kept σ constant
to focus on the credit risk aspect of the problem.

A Mathematical Origins of the Density p(ν): Brownian exponen-
tial functionals, Schrödinger operator with Morse Potential
and Maass Laplacian

In this Appendix we discuss the mathematical origins of the density p(ν) in Proposition 3.3 and
provide relevant references. For ν < 0, this density was Þrst obtained by Wong (1964, p.271,
Eq.38) (see also Comtet et al. (1998) and Linetsky (2004a)). This density is closely related to
several classical mathematical objects.

For ν ∈ R, consider the process X(ν) solving the SDE (3.4) and starting at x > 0. DeÞne a

new process {Z(ν)t := 1
2 lnX

(ν)
t , t ≥ 0},

dZ
(ν)
t =

µ
ν +

1

2
e−2Z

(ν)
t

¶
dt+ dBt, Z

(ν)
0 = z =

1

2
lnx.

Let P
(ν)
z be the law of the process Z(ν) starting at z ∈ R and let PBz be the law of standard

Brownian motion starting at z ∈ R.
Proposition A.1 We have the following absolute continuity relationship

dP
(ν)
z

dPBz

¯̄̄̄
¯
Ft
= exp

½
−ν

2

2
t+ ν(Bt − z)− 1

4
(e−2Bt − e−2z)−

Z t

0

µ
ν − 1
2
e−2Bu +

1

8
e−4Bu

¶
du

¾
.

Proof. This result follows from Girsanov�s theorem.2

Let q(ν)(t; x, y) be the density deÞned by

q(ν)(t;x, y) :=
∂

∂y
EBx

h
e−

R t
0(

ν−1
2
e−2Bu+1

8
e−4Bu)du1{Bt≤y}

i
, (A.1)

where B is a standard Brownian motion starting at x. From Proposition A.1 we have

p(ν)(t;x, y) = e−
ν2

2
te

1
4x
− 1
4y

³y
x

´ ν
2
q(ν)

µ
t;
1

2
ln x,

1

2
ln y

¶
.

By the Feynman-Kac theorem, the density q(ν)(t; x, y) is the heat kernel of the second-order
differential operator

H(ν) = −1
2

d2

dx2
+
ν − 1
2

e−2x +
1

8
e−4x,

a self-adjoint operator in L2(R). The heat kernel satisÞes the heat equation with the operator
H(ν)

H(ν)q = −∂q
∂t
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with the initial condition q(ν)(0;x, y) = δ(x − y), where δ(·) is Dirac�s delta. The operator
H(ν) is the well-known Schrödinger operator with Morse potential. The spectral expansion of
the density p(ν) in Proposition 3.3 thus follows from the spectral expansion of the Schrödinger
operator with Morse potential. The Schrödinger operator

− d2

dx2
+ V (x)

with potential of the form
V (x) = ae−βx + be−2βx

Þrst appeared in quantum mechanics in the classic paper Morse (1926) on the spectra of diatomic
molecules. It is closely related to another classical differential operator, the Maass Laplacian or
Schrödinger operator on the Poincaré upper half-plane in a magnetic Þeld.

Let H2 be the upper half-plane with rectangular coordinates (x, y), x ∈ R, y > 0, and
with the Poincaré metric (hyperbolic plane). Consider the Schrödinger operator with a uniform
magnetic Þeld B, B ∈ R, on H2

HB = −1
2
y2
µ
∂2

∂x2
+
∂2

∂y2

¶
+ iB y

∂

∂x
+
B2

2
.

This is a (-1/2 of) standard Laplace-Beltrami operator on H2 plus magnetic Þeld terms. Intro-
duce a new variable η = −1

2 ln y. On functions of the form u(x, η) = exp(−ipx − 1
2η)v(η) the

operator HB reduces to the Schrödinger operator with Morse potential. Harmonic analysis on
the hyperbolic plane can be applied to obtain its spectral representation.

Thus, the density of linear diffusion (3.4), the density of Brownian motion killed at a linear
combination of two Brownian exponential functionals (A.1), the heat kernel of the Schrödinger
operator with Morse potential, and the heat kernel of the Maass Laplacian on the hyperbolic
plane are closely related. These connections have been explored in Alili and Gruet (1997), Alili
et al. (2000), Comtet (1987), Comtet and Monthus (1996), Comtet et al. (1998), Grosche (1988),
and Ikeda and Matsumoto (1999) in several different contexts.

B Connection with Asian Options

The process X(ν) and its density p(ν) are closely related to the problem of pricing arithmetic
Asian options. Assume that, under the EMM, the underlying asset price follows a geometric
Brownian motion process {St = S0 exp(σBt + (r − q − σ2/2)t), t ≥ 0}. For t > 0, let At be
the continuous arithmetic average price, At = t−1

R t
0 Sudu. An Asian call (put) option with

strike K > 0 and expiration T > 0 delivers the payoff (AT − K)+ ((K − AT )+) at T . After
standardizing the problem (see Geman and Yor (1993)), it reduces to computing expectations of

the form E[(A
(ν)
τ −k)+] (E[(k−A(ν)τ )+]), where τ = σ2T/4, ν = 2(r− q−σ2/2)/σ2, k = τK/S0,

and A
(ν)
τ is a Brownian exponential functional (see Yor (2001))

A(ν)τ =

Z τ

0
e2(Bu+νu)du.

Dufresne�s identity in law (Dufresne (1989), (1990); see also Donati-Martin et al. (2001)) states
that, for each Þxed t > 0,

A
(ν)
t

(law)
= X

(ν)
t ,

21



where X
(ν)
t is the diffusion process (3.4) starting at the origin. To see this, recall Eq.(3.3) (in

this case x = 0). By invariance to time reversal of Brownian motion, for each Þxed t > 0

X
(ν)
t =

Z t

0
e2(Bt−Bu)+2ν(t−u)du

(law)
=

Z t

0
e2(Bs+νs)ds = A

(ν)
t .

Dufresne�s identity in law was applied to the valuation of Asian options by Donati-Martin et
al. (2001). To compute the Asian option price, these authors observe that this computation
is equivalent to the computation of the price of an option written on the process X(ν) starting
at the origin. They compute the resolvent kernel of X(ν) and, on integration with the payoff,
obtain the Laplace transform of the option price with respect to time to expiration. This gives an
alternative derivation of the celebrated Geman and Yor (1992), (1993) Laplace transform result
(which was originally obtained via Lamperti�s identity and the theory of Bessel processes). To
recover the Asian option price for Þxed time to expiration, one needs to invert the Laplace
transform. The Laplace inversion for Asian options is accomplished in Linetsky (2004a) by
means of the spectral expansion approach.

C Conßuent Hypergeometric Functions

This Appendix collects some facts about the conßuent hypergeometric functions. The reader
is referred to Slater (1960), Buchholz (1969), Abramowitz and Stegun (1972), and Prudnikov
et al. (1990) for further details. All the special functions in this Appendix are available as
built-in functions in Mathematica and Maple software packages. These packages use a variety of
integral and asymptotic representations given in the above references in addition to the deÞning
hypergeometric series presented here to compute these functions efficiently.

The Kummer conßuent hypergeometric function is deÞned by the hypergeometric series

1F1[a; b; z] =
∞X
n=0

(a)n
(b)n

zn

n!
,

where (a)0 = 1, (a)n = a(a+1)...(a+n−1) are the Pochhammer symbols, (a)n = Γ(a+n)/Γ(a),
where Γ(z) is the Gamma function. The regularized Kummer function 1F1[a; b; z]/Γ(b) is an
analytic function of a, b, and z, and is deÞned for all values of a, b, and z real or complex. The
second conßuent hypergeometric function is deÞned by

U(a, b, z) =
π

sin(πb)

½
1F1[a; b; z]

Γ(1 + a− b)Γ(b) −
z1−b 1F1[1 + a− b; 2− b; z]

Γ(a)Γ(2− b)
¾
.

It is analytic for all values of a, b, and z real or complex even when b is zero or a negative integer,
for in these cases it can be deÞned in the limit b → ±n or 0. It has the following symmetry
property

U(a, b, z) = z1−bU(1 + a− b, 2− b, z).
The conßuent hypergeometric functions are solutions of the conßuent hypergeometric equation

z
d2u

dz2
+ (b− z)du

dz
− au = 0. (C.1)
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The Þrst Whittaker function is deÞned by

Mκ,µ(z) = z
µ+1/2e−z/2 1F1[1/2 + µ− κ; 1 + 2µ; z].

The regularized Whittaker function

Mκ,µ(z) =
Mκ,µ(z)

Γ(1 + 2µ)
(C.2)

is analytic for all values of κ, µ, and z real or complex. The second Whittaker function is deÞned
by

Wκ,µ(z) = z
µ+1/2e−z/2U(1/2 + µ− κ, 1 + 2µ, z)

=
π

sin(2µπ)

½ Mκ,−µ(z)
Γ(1/2 + µ− κ) −

Mκ,µ(z)

Γ(1/2− µ− κ)
¾

(C.3)

and is analytic for all values of k, µ, and z real or complex and even in its second index,

Wκ,−µ(z) =Wκ,µ(z).

Whittaker functionsMκ,µ(z) andWκ,µ(z) are the two solutions of the Whittaker differential
equation

wzz +

Ã
−1
4
+
κ

z
+

1
4 − µ2
z2

!
w = 0 (C.4)

with the Wronskian

Wκ,µ(z)M0
κ,µ(z)−Mκ,µ(z)W

0
κ,µ(z) =

1

Γ(µ− κ+ 1/2) . (C.5)

When κ = µ + n + 1
2 , n = 0, 1, 2, . . ., the Wronskian vanishes and the functions Mκ,µ(z) and

Wκ,µ(z) become linearly dependent and reduce to generalized Laguerre polynomials (Buchholz
(1969), p.214)

Mµ+n+ 1
2
,µ(z) =

n!

Γ(2µ+ n+ 1)
e−

z
2 zµ+

1
2L(2µ)n (z), (C.6)

Wµ+n+ 1
2
,µ(z) = (−1)nn!e−

z
2 zµ+

1
2L(2µ)n (z). (C.7)

The following integrals with Whittaker functions are used in the proofs of bond and option
pricing formulas:Z x

0
zα−1e−

z
2Mκ,µ(z)dz =

xα+µ+1/2

α+ µ+ 1/2
2F2[α+µ+1/2, 1/2+κ+µ;α+µ+3/2, 2µ+1;−x] (C.8)

for x > 0 and <(α+ µ+ 1/2) > 0 (Prudnikov et al. (1990), p.39, Eq.(1.13.1.1)),Z ∞

x
zα−1e−

z
2Wκ,µ(z)dz =

Γ(α+ µ+ 1/2)Γ(α− µ+ 1/2)
Γ(α− κ+ 1)

− xα+µ+1/2

α+ µ+ 1/2

Γ(−2µ)
Γ(1/2− κ− µ) 2F2[α+ µ+ 1/2, 1/2 + κ+ µ;α+ µ+ 3/2, 2µ+ 1;−x]
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− xα−µ+1/2

α− µ+ 1/2
Γ(2µ)

Γ(1/2− κ+ µ) 2F2[α− µ+ 1/2, 1/2 + κ− µ;α− µ+ 3/2,−2µ+ 1;−x] (C.9)

for x > 0 (Prudnikov et al. (1990), p.40, Eq.(1.13.2.2)),Z ∞

0
zα−1e−

z
2Wκ,µ(z)dz =

Γ(α+ µ+ 1/2)Γ(α− µ+ 1/2)
Γ(α− κ+ 1) (C.10)

for <(α) > |<(µ)|− 1/2 (Prudnikov et al. (1990), p.256, Eq.(2.19.3.7)), and indeÞnite integrals
(Prudnikov et al. (1990), pp.39-40, Eq.(1.13.1.6), Eq.(1.13.2.6))Z

zκ−2e−
z
2Wκ,µ(z)dz = −zκ−1e− z

2Wκ−1,µ(z), (C.11)Z
zκ−2e−

z
2Mκ,µ(z)dz =

1

κ+ µ− 1/2z
κ−1e−

z
2Mκ−1,µ(z). (C.12)

The generalized hypergeometric function is deÞned by

2F2[a1, a2; b1, b2; z] =

∞X
n=0

(a1)n(a2)n
(b1)n(b2)n

zn

n!
. (C.13)

The regularized function 2F2[a1, a2; b1, b2; z]/(Γ(b1)Γ(b2)) is analytic for all values of a1, a2, b1, b2,
and z real or complex.

The following integrals with Laguerre polynomials are used in the proofs of pricing formulas:Z ∞

0
xα−1e−xL(ν)n (x)dx =

(ν − α+ 1)n
n!

Γ(α) (C.14)

for <(α) > 0 (Prudnikov et al. (1986), p.463, Eq.(2.19.3.5)),Z ∞

x
zα−1e−zL(ν)n (z)dz

=
(ν − α+ 1)n

n!
Γ(α)− (ν + 1)n

n!

xα

α
2F2[ν + n+ 1,α; ν + 1,α+ 1;−x] (C.15)

for x > 0 (Prudnikov et al. (1986), p.51, Eq.(1.14.3.7)), and the indeÞnite integral (Prudnikov
et al. (1986), p.51, Eq.(1.14.3.9)):Z

zν+n−1e−zL(ν)n (z)dz =
1

n
zν+ne−zL(ν)n−1(z). (C.16)

D Proofs

Proof of Proposition 3.2 (Donati-Martin et al. (2001)). It is classical (Ito and McKean
(1972)) that, for s > 0, the resolvent kernel can be taken in the form

Gs(x, y) = w
−1
s m(y)ψs(x ∧ y)φs(x ∨ y), (D.1)

where the functions ψs(x) and φs(x) can be characterized as the unique (up to a multiple
independent of x) solutions of the ODE

2x2u00(x) + [2(ν + 1)x+ 1]u0(x) = s u(x) (D.2)
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by demanding that ψs is increasing and φs is decreasing (Borodin and Salminen (1996, p.18)).
These functions have the following limits at zero and inÞnity (Borodin and Salminen (1996,
pp.18-19)). At the entrance boundary at zero: ψs(0+) > 0, φs(0+) = ∞. At the natural
boundary at inÞnity: ψs(∞) = +∞, φs(∞) = 0. The functions ψs(x) and φs(x) are linearly
independent for all s > 0. Moreover, the Wronskian ws with respect to the scale density s(x)
deÞned by

φs(x)ψ
0
s(x)− ψs(x)φ0s(x) = s(x)ws.

is independent of x.
We look for solutions to (D.2) in the form

u(x) = x
1−ν
2 e

1
4xw

µ
1

2x

¶
(D.3)

for some function w(z). Substituting this functional form into Eq.(D.2), we arrive at the Whit-
taker equation (C.4) for w, where κ = (1− ν)/2 and µ = µ(s) = 1

2

√
2s+ ν2. For s > 0, the two

linearly independent solutions are Mκ,µ(z) and Wκ,µ(z) with the Wronskian (C.5). Thus, the
solutions ψs(x) and φs(x) of the original problem can be taken in the form

ψs(x) = x
1−ν
2 e

1
4xW 1−ν

2
,µ(s)

µ
1

2x

¶
, φs(x) = x

1−ν
2 e

1
4xM 1−ν

2
,µ(s)

µ
1

2x

¶
. (D.4)

The boundary properties are veriÞed using the asymptotic properties of the Whittaker functions
for z > 0 and µ > 0

Mκ,µ(z) ∼ 1

Γ(1 + 2µ)
zµ+

1
2 e−

z
2 and Wκ,µ(z) ∼ Γ(2µ)

Γ (µ− κ+ 1/2)z
−µ+ 1

2 e−
z
2 as z → 0, (D.5)

Mκ,µ(z) ∼ 1

Γ (1/2 + µ− κ)z
−κe

z
2 and Wκ,µ(z) ∼ zκe− z

2 as z →∞. (D.6)

From (C.5), the Wronskian with respect to the scale density is:

ws =
1

2Γ(µ(s) + ν/2)
. (D.7)

Substituting (D.4) and (D.7) into (D.1) we arrive at (3.10). The case x = 0 is obtained in the
limit x→ 0 using the asymptotic properties of the Whittaker functions (D.6). 2

Proof of Proposition 3.3. Following the complex variable approach to spectral expansions
(see Titchmarsh (1962)), we analytically invert the Laplace transform (3.9) with the resolvent
kernel (3.10). Regarded as a function of complex variable s ∈ C, the resolvent kernel (3.10) has
the following singularities. For ν < 0, it has simple poles at

s = sn = −λn, λn = 2n(|ν|− n), n = 0, 1, ..., [|ν|/2], (D.8)

(poles of the Gamma function in (3.10) at µ(−λn) + ν/2 = −n, n = 0, 1, ..., [|ν|/2], where [x]
denotes the integer part of x). The residues at these poles are:

Ress=−λnGs(x, y)
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= (−1)n2(|ν|− 2n)
n!

e
1
4x
− 1
4y

³y
x

´ ν−1
2 M 1−ν

2
,− ν

2
−n

µ
1

2(x ∨ y)
¶
W 1−ν

2
,− ν

2
−n

µ
1

2(x ∧ y)
¶

=
2(|ν|− 2n)n!
Γ(1 + |ν|− n)e

− 1
2y

µ
1

2x

¶−nµ 1
2y

¶1+|ν|−n
L(|ν|−2n)n

µ
1

2x

¶
L(|ν|−2n)n

µ
1

2y

¶
. (D.9)

The second equality follows from the reduction of the Whittaker functions to generalized La-
guerre polynomials when the difference between the two indexes is a positive half-integer (Eqs.(C.6)
and (C.7)). Furthermore, for all real ν the resolvent has a branch point at s = −ν2/2. We place
the branch cut from s = −ν2/2 to s → −∞ on the negative real axis. It is convenient to
parameterize the branch cut as {s = −(ρ2 + ν2)/2, ρ ≥ 0}. The jump across the branch cut is

G 1
2
(ν2+ρ2)eiπ (x, y)−G 1

2
(ν2+ρ2)e−iπ(x, y) = −e

1
4x
− 1
4y

³y
x

´ ν−1
2
W 1−ν

2
, iρ
2

µ
1

2(x ∧ y)
¶

×
½
Γ

µ
ν − iρ
2

¶
M 1−ν

2
,− iρ

2

µ
1

2(x ∨ y)
¶
− Γ

µ
ν + iρ

2

¶
M 1−ν

2
, iρ
2

µ
1

2(x ∨ y)
¶¾

= − i
π
e
1
4x
− 1
4y

³y
x

´ ν−1
2
W 1−ν

2
, iρ
2

µ
1

2x

¶
W 1−ν

2
, iρ
2

µ
1

2y

¶ ¯̄̄̄
Γ

µ
ν + iρ

2

¶¯̄̄̄2
sinh(πρ). (D.10)

In the Þrst equality we used the fact that Wκ,µ(z) is even in its second index. In the second
equality we used Eq.(C.3).

To recover the transition density, we invert the Laplace transform (3.9). The Bromwich
complex inversion formula reads for t > 0

p(t; x, y) =
1

2πi

Z c+i∞

c−i∞
estGs(x, y)ds,

where the integration is performed along the contour Re(s) = c for some c > 0. This integral is
calculated by applying the Cauchy Residue Theorem (see Titchmarsh (1962)):

p(t;x, y) = 1{ν<0}
[|ν|/2]X
n=0

esntRess=snGs(x, y) (D.11)

− 1

2πi

Z ∞

0
e−

(ν2+ρ2)t
2

n
G 1

2
(ν2+ρ2)eiπ(x, y)−G 1

2
(ν2+ρ2)e−iπ(x, y)

o
ρdρ.

Substituting (D.9) and (D.10) in (D.11), we arrive at the spectral representation for the density
(3.12).

Since the boundary at zero is entrance, the limit x→ 0 exists and can be explicitly computed
using the asymptotics of the Whittaker function (D.6) and Laguerre polynomials

lim
z→∞(z

−nL(α)n (z)) =
(−1)n
n!

. 2

Proof of Proposition 3.4. First consider the case ν < 2/p (equivalently, r − q − σ2/2 <
0). Bond payoff ψbond(x) = 1 is such that χψ ∈ H, and the spectral representation (3.13)
is applicable. The integrals in Eqs.(3.14) and (3.15) for χψ(y) = (y/β)−

1
p are calculated in
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closed form by reduction to the known integrals (C.10) and (C.14) for Whittaker functions and
Laguerre polynomials.

The case ν ≥ 2/p (equivalently, r − q − σ2/2 ≥ 0) is more involved. For the bond payoff
ψbond(x) = 1, χψ(x) = (x/β)−1/p /∈ H and, hence, the spectral representation (3.13) cannot
be applied. The alternative is to Þrst compute the Laplace transform (3.16) with the resolvent
kernel (3.10) and then do the Laplace inversion, choosing the contour of integration in the
Laplace inversion formula

eqTS−1B(S, T ) = E(ν)x [(X(ν)
τ /β)−1/p] =

1

2πi

Z c+i∞

c−i∞
esτΦ(ν)s (x)ds (D.12)

to the right of any singularities of Φ
(ν)
s (x) in the complex s-plane. The function Φ

(ν)
s (x) is

calculated in closed form by calculating the integral in (3.16) using the known integrals (C.8) and
(C.9). We omit the resulting cumbersome expression. In addition to the singularities inherited
from the resolvent kernel Gs(x, y) (a branch cut from s = −ν2/2 to −∞ on the negative real

axis for all real ν and poles (D.8) for ν < 0), for ν > 2/p, Φ
(ν)
s (x) has an additional simple pole

at

s = s∗ = −λ∗, λ∗ = 2

p

µ
ν − 1

p

¶
=
4(r − q)
p2σ2

> 0

that comes from the factor 1/(1/p− ν/2 + µ(s)). The residue at this pole is

Ress=s∗Φ
(ν)
s (x) = (x/β)−

1
p
Γ(ν − 1/p)
Γ(ν − 2/p)U

µ
1

p
,
2

p
− ν + 1, 1

2x

¶
,

a strictly positive expression for ν > 2/p.
The inversion integral (D.12) is calculated by applying the Cauchy Residue Theorem as in

the proof of Proposition 3.3 (Eq.(D.11))

E(ν)x [(X(ν)
τ /β)−1/p] = 1{ν>2/p}es

∗τRess=s∗Φ
(ν)
s (x) + 1{ν<0}

[|ν|/2]X
n=0

esnτRess=snΦ
(ν)
s (x)

− 1

2πi

Z ∞

0
e−

(ν2+ρ2)τ
2

½
Φ
(ν)
1
2
(ν2+ρ2)eiπ

(x)−Φ(ν)1
2
(ν2+ρ2)e−iπ(x)

¾
ρdρ.

Computing this expression leads to the result in Proposition 3.4 for the bond price, with the
additional pole at s = s∗ resulting in the additional positive term in the bond pricing formula
for ν > 2/p. 2

Proof of Proposition 3.5. The put payoff ψput(x) = (K − x)+ is such that χψ ∈ H for
all ν ∈ R and, hence, the valuation of the put payoff given no bankruptcy (2.6) follows from the
spectral expansion (3.13). The integrals in the expressions for the expansion coefficients (3.14)
and (3.15) are calculated in closed form by reduction to the known integrals (C.9) and (C.15).
The recovery part (bankruptcy claim) value (2.7) follows from the bond valuation in Proposition
3.4. 2

Proof of Proposition 4.1. The function u(S) = P(limt→∞ S∆t = ∞|S0 = S) solves the
ODE (see Karlin and Taylor (1981), Chapter 12)

1

2
σ2S2uSS + [r − q + αS−p]SuS = αS−pu
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subject to the boundary conditions

u(0) = 0, u(∞) = 1.

Introducing a new variable y = 1/(2x), where x = (pσ2/(4α))Sp as in Section 3, this ODE
reduces to the conßuent hypergeometric equation (C.1) with

a =
1

p
, b =

2

p
− ν + 1 = 2(q − r)

pσ2
+ 1 +

1

p
.

The solution satisfying the required boundary conditions is

u(S) =
Γ(ν − 1/p)
Γ(ν − 2/p)U

µ
1

p
,
2

p
− ν + 1, 1

2x

¶
.

The boundary conditions are veriÞed by using the asymptotic properties of the function U(a, b, x)

lim
x→0U(a, b, x) =

Γ(1− b)
Γ(1 + a− b)

for b < 1, and
lim
x→∞U(a, b, x) = 0

for a > 0. 2
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[47] Schönbucher, P.J., 2003, Credit Derivatives Pricing Models, Wiley.

[48] Shiryaev, A.N., 1961, �The Problem of the Most Rapid Detection of a Disturbance in a
Stationary Process,� Soviet Mathematics Doklady, 2, 795-799.

[49] Slater, L.J., 1960, Conßuent Hypergeometric Functions, Cambridge University Press.

[50] Takahashi, A., T. Kobayashi, and N. Nakagawa, 2001, �Pricing Convertible Bonds with
Default Risk,� Journal of Fixed Income, 11, 20-29.

[51] Titchmarsh, E.C., 1962, Eigenfunction Expansions Associated with Second-order Differen-
tial Equations, Clarendon, Oxford.

[52] Wong, E., 1964, �The Construction of A Class of Stationary Markoff Processes,� In: Bell-
man, R. (Ed.), Sixteenth Symposium in Applied Mathematics � Stochastic Processes in
Mathematical Physics and Engineering, American Mathematical Society, Providence, RI,
pp. 264-276.

[53] Yor, M., 2001, Exponential Functionals of Brownian Motion and Related Processes,
Springer, Berlin.

31


