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1 Introduction

The Federal Deposit Insurance Corporation Act of 1991 mandates the adoption of a risk based

deposit insurance premium structure for US Banks. Basel II proposal moved towards requiring

bank capital levels to be risk based. Recently, the Federal Deposit Insurance Reform Act of 2005

permits the FDIC to charge every bank a premium based on risk, provide initial assessment credits

to banks that helped to build up the insurance funds, and require the FDIC to pay rebates if the

ratio of insurance fund size to insured deposits (reserve ratio) exceeds certain thresholds. While

theoretically very appealing, concerns have been raised about the procyclical adverse impact of risk

based premia and capital requirements (Blinder and Wescott, 2001; Allen and Saunders, 2004).

Banking organizations are required to pay higher premia and hold greater capital in economic

downturns, thereby aggravating the effects of economic recessions.

This paper proposes an aggregate premium policy that is countercyclical by design and is

nonetheless founded on risk based principles. The basic idea is to build into the premium system

a swap contract that trades premia in good times for relief in bad times. In addition, the proposed

design does not allow the deposit insurance fund size to grow excessively in a prolonged economic

boom. This feature is engineered by also incorporating a premium reduction swap when the fund

size exceeds a target level. The design therefore builds into the aggregate premium policy an

elasticity for both downturns and fund growth, with premiums taking a percentage reduction in

response to the depth of the downturn and the excess fund size.

The target fund size, aggregate premium level and rebate structures are all risk based by

ensuring that the deposit insurance system has a high probability of survival over the longer

term. We first establish a benchmark case where there is no premium rebates. In such a system

we determine the target fund size and aggregate premium level that ensures a long term fund

survival. We then evaluate the effects of altering rebates and premium levels and fund-size targets

in the neighborhood of the benchmark level on the probability of long term fund survival. We
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report the trade-offs that are implicit between these policies when we enforce neutrality of the

long term survival probability.

We determine the long term survival probability by simulating the operation of the system

through time. For the determination of these basic trade-offs we consider a time homogeneous

formulation of the risks involved and we essentially perform all calculations in present value terms

by considering a zero interest rate economy. The risks facing the system are the time series of

losses on which the system has to payout and we build for this purpose a model for the aggregate

loss distribution. The model entails three uncertain components. They are the number of loss

events (bank failures), the asset size of the failing banks, and the loss rate given default.

The model employs the unconditional distributions of these events. We model the number of

loss events by a Poisson process with a constant arrival rate. For the distribution of asset sizes, we

analyze the data on bank asset sizes for US banks over the years 2000-2003. We confirm that the

Frechet distribution provides a statistically good fit for the data. With respect to loss rates, we

analyze the data on loss rates experienced by the Federal Deposit Insurance Corporation over the

period 1984-2002 on 1508 bank failures. We show that the Weibull model provides a statistically

good fit to describe the historical loss experience.

We build these loss components into a simulation of the effects of alternative premium policies

and evaluate the probability of long term fund survival resulting from the adoption of these risk

based and countercyclical premium policies. The final result demonstrates the trade-offs between

the various policy dimensions for a given target long term survival probability. The specific policy

dimensions are the downturn rebate, the rebate for excessive growth of the fund, and the level of

aggregate premiums and target fund size.

The outline of the paper is as follows. Section 2 presents the design of the counteryclical and

risk based premium system. In Section 3 we present the results on modeling the data on asset

sizes and loss rates. In Section 4 we describe the simulation of the long term survival probability

and establish the benchmarks for fund size and aggregate premiums. Section 5 constructs the
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trade-off table. Section 6 concludes.

2 The Aggregate Premium System

The aggregate premium system we consider has three risk based components. They are a flat

rate, rebate enhancements based on the fund size, and the level of aggregate losses due to bank

failures. The premium is envisaged as charged at the end of the year, when the level of losses

is known. The risk considerations in determining premium policy focuses on the financial health

of the insurance fund. The objective is to enforce a premium structure that is not excessive but

yet ensures the viability of the insurance system. Specifically, in this study, we target a 95%

probability of surviving 10 years. Hence, we seek to minimize premiums that are countercyclical

and yet meet such a target. Such probability target allows taxpayers to bear some of the default

risk of the insurance fund. As indicated by Blinder and Wescott (2001), "reducing the taxpayers’

potential exposure all the way to zero is not the appropriate goal of policy."

For the analysis of the risks involved we adopt a discrete time model with annual periods

denoted by n = 0, · · · ,N. We also work in present value terms or equivalently consider a zero

interest rate economy. The flat aggregate premium is κ in billions of dollars per year. Denote by

Cn the size of the fund, in billions of dollars, at the start of period n, and let Ln be the level of

losses, in billions of dollars, paid out by the Insurance fund in period n. We introduce a premium

rebate for fund sizes above a benchmark level C. The elasticity of premium rebate with respect to

Cn exceeding C is β. We also introduce a rebate with elasticity γ with respect to the aggregate

loss level Ln. The annual premium assessed at the end of the year n, Pn, is then

Pn = κ

µ
max

µ
Cn

C
, 1

¶¶−β
(1 + Ln)

−γ (1)

For Cn < C and Ln = 0 the premium set by equation (1) is the flat rate of κ billion dollars. In
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other words, κ is the zero-rebate premium. In states Cn = C and Ln = 0, κ must be high enough

to allow for rebates in bad states of the world. For a fund size that exceeds the benchmark level

of C by 10% the premium that is rebated is 0.1βκ billion dollars. Furthermore, for a 10% increase

in the level of losses the premiums rebated are 0.1γ(1 + Ln) billions of dollars.

We suppose the system starts out with the benchmark level for the fund size, of C, and we

present the trade-offs in the flat rate κ, the rebate elasticities β, γ that are consistent with long

term fund survival measured by a 95% target probability of surviving 10 years.

The only inflows into the fund are the premiums and the only outflows are losses. The fund

size at the start of the next period is then given by

Cn+1 = Cn + Pn − Ln (2)

and the insurance fund is declared bankrupt when the fund size Cn reaches a minimal reserve

level.

The generation of annual aggregate losses Ln and the operation of the system over time are

as follows. We analyze the long term survival probabilities by simulating the annual losses for ten

years. A random number Mn of failures each year generate the aggregate loss amount. Each of

these failures has an associated asset size, Ak for failure by bank k, and loss rate lk with the kth

loss amount being Aklk and Ln =
PMn

k=1Aklk. The asset sizes are drawn from a stable aggregate

distribution of asset sizes, and likewise loss rates are drawn from a stable and independent distri-

bution of loss rates. The loss arrivals are generated by a Poisson process with a constant arrival

rate. The asset size and loss rate distributions employed in the study are developed in the next

section.
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3 The Risk Neutralization of Premia

One approach to set annual premiums is at their actuarially fair level or equal to the statistically

expected loss level. The statistical expectation is a sound pricing principle provided one has a

large number of independent contracts and the expectation is the realized cash flow period by

period with high probability. For example with fire insurance one may sign up a large number of

independent contracts and each year we collect in premiums the expected payout while the actual

payout is a random outcome that by the law of large numbers is essentially equal to the total

annual premium. Note here that we have a large number of independent contracts and we have

collected all the annual premiums each year. As a result we have an essentially zero cash flow

every year.

One may argue that such an actuarially fair approach is appropriate for deposit insurance

premiums as we do have a large number of banks in the system. However, within any given year

there may be a lot of correlation across bank failures and independence is accessed at best only

over time. Suppose we have enough independence over ten years. In this case we must charge

every bank the actuarially fair premium for this period today, with no premiums in the next ten

years, and when we payout all the losses for ten year period, we will have an essentially zero cash

flow to the system at the end of ten years. The procedure can be repeated every ten years. This is

not an operational system as future premiums cannot be collected up front and the fire insurance

analogy breaks down.

An alternative is to have a capital reserve that pays out losses in the possibly early bad

years with a view to replenishing the capital from the collection of future premiums. The system

then requires an initial capital level to ensure that the insurance fund is capable of functioning

independently over time. If the contributors to the capital are the insured pool themselves then

their premium must reflect a charge for contribution to capital over and above the expected loss

that they are being covered for. Once we have a premium above expected value for whatever
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reason, we are involved in some form of risk neutralization. The contribution to capital is a

cost of developing an effective and operable insurance system and is in this sense a part of the

price of insurance. The charge for capital contribution plus the actuarial loss level is equal to an

expected loss calculation under a specific change of probability and is therefore equivalent to a

risk neutralization.

The extent of the capital contribution depends on how one defines a functional insurance

system. For example one could target a 99% probability of surviving 30 years or just a 95%

probability of surviving 10 years. Clearly the capital contribution in the former case is larger

than the latter. In the current context we may conceptualize the situation as follows. Let CNs

be the level of the fund at some distant time N on the scenario path s. Bear in mind that we

allow CNs to be negative if losses dominate the fund size coupled with premium collections in the

interim. Any system that we put in place will lead us to a random variable CN with the outcomes

(CNs, s ∈ S), where S is the set of all scenarios. A functional insurance system must define what

risk levels seen as exposure to negative fund sizes at time N are tolerable. Recent risk theory, has

axiomatically characterized the definition of acceptable risk levels.

Artzner, Delbaen, Eber and Heath (1999) define acceptable cash flows as including all positive

random variables, but permitting a limited exposure to some negative outcomes. The collection

of all acceptable cash flows is modeled as cash flows that have a positive expected outcome under

a sufficient number of simulated scenario tests. Each simulated scenario expectation computation

is the calculation of EQ[CN ] for some test measure Q. Formally, cash flows CN are acceptable just

if

EQi [CN ] ≥ 0

for a collection of M test measures Qi, i = 1, · · · ,M .

Clearly we wish to minimize the premium charge subject to the constraint of having an ac-

ceptable result. We may thus write the problem of determining the annual premium κ for N years
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as

Min Nκ

S.T. EQi [L]−Nκ ≤ 0, i = 1, · · · ,M

The dual to this simple linear programming problem yields

Nκ =Maxλ≥0
X
i

λiE
Qi [L]

Hence, we see the aggregate premium as an expected loss computation using a measure in the

convex hull of the measures defining acceptability. This is the form of risk neutralization induced

by the objective of constructing functioning insurance systems.

In general it is quite difficult to envisage what the reasonable candidate test measures Qi

should be. Recent progress in the theory of acceptability has focused on law invariant measures

of risk and acceptability, that is measures that depend solely on the probability distribution of

the aggregate cash flow outcome. These law invariant risk measures have been characterized by

Kusuoka (2001) as a form of weighted expected shortfall taken at all possible levels of V AR.

For the moment we ignore the expected shortfall and target a V AR like measure by ensuring

that the probability of the fund getting below a threshold over a specified number of years is

sufficiently low, or equivalently the probability of staying above the threshold is sufficiently high.

Specifically we target a 95% probability of staying above a threshold for 10 years.

We now recognize that organizing premia to meet long term survival targets will force a

premium level above the actuarially fair level and as a result the fund size will grow over time.

It is then imperative to build into the system a capital rebate feature that reduces premia when

the fund size crosses a threshold. We build into the system investigated such automatic premium

rebate mechanisms.
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4 Asset Size and Loss Rate Distributions

The asset sizes that are relevant are those of all potential banks that are subject to failure in any

given year. The loss rates are those that have been experienced in past bank failures. For the

US banking system, the distribution of asset sizes has a characteristic property of a substantial

number of banks that have assets that are an order of magnitude above the modal or most likely

asset size. Such a fat tailed distribution can be well modeled by the parametric class of Frechet

distributions. This distribution has two parameters, a scale parameter cF and a shape parameter

aF with the cumulative distribution function F (A; cF , aF ) given by

F (A; cF , aF ) = exp

Ã
−
µ
A

cF

¶−aF!
.

The associated density is f(A; cF , aF ) and

f(A; cF , aF ) = exp

Ã
−
µ
A

cF

¶−aF! aF c
aF
F

A1+aF
(3)

and the tail of the distribution falls at rate 1+ aF with the consequence that moments exist only

for orders less than aF . Hence the mean, µF , is finite for aF > 1 and the variance, σ2F is finite for

aF > 2 in which case

µF = cFΓ

µ
1− 1

aF

¶
σ2F = c2F

Ã
Γ

µ
1− 2

aF

¶
− Γ

µ
1− 1

aF

¶2!

The Frechet distribution has a mode Am below cF at the point

Am = cF

µ
1 +

1

aF

¶− 1
aF
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that reflects a positive most likely asset size and yet it has a long tail with substantial probability

at large sizes as the density decays at a power law. In this regard it is particularly suited for

describing the distribution of asset sizes in a population of many small banks with a few very

large ones.

For the loss rate distribution we consider the parametric class of the Weibull distribution.

Loss rates are essentially bounded variables for which all moments are finite. This is true for the

Weibull family. This family also has two parameters, a scale parameter cW ,and a shape parameter

aW with the cumulative distribution function G(L; cW , aW ) given by

G(L; cW , aW ) = 1− exp
µ
−
µ

L

cW

¶aW¶
.

The associated density is g(L; cW , aW ) and

g(L; cW , aW ) = exp

µ
−
µ

L

cW

¶aW¶ awL
aW−1

caWW
(4)

The mean, µW and variance, σ2W are given by

µW = cWΓ

µ
1 +

1

aW

¶
σ2W = c2W

Ã
Γ

µ
1 +

2

aW

¶
− Γ

µ
1 +

1

aW

¶2!

For aW < 1 this density has a mode at zero representing a most likely loss rate of zero. However,

for the case aW > 1 we have a modal loss level Lm below cW of

Lm = cW

µ
1− 1

aW

¶ 1
aW

.

Furthermore, in this case the probability in the upper tail decreases at a rate that is faster than

exponential which makes loss rates near unity relatively uncommon. The shape parameter of the
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Weibull distribution, aW parametrizes the behavior of the hazard rate for losses. The hazard

rate is the relative probability of a large loss rate to an even larger loss rate. When hazard rates

are increasing it gets more and more difficult to get to higher and higher loss rate levels. For

the Weibull, with aW < 1 we have decreasing hazard rates while for aW > 1 we have increasing

hazard rates.

For the distribution of loss rates we anticipate a positive mode, with an increasing hazard rate

as all attempts are being made to limit losses. Hence the Weibull model with shape parameter

above unity is appropriate. We also note that the Weibull model would be inappropriate for asset

sizes as it has a fat tail only when its mode is zero while asset sizes have a fat tail with a positive

mode. Similarly, the Frechet model is inappropriate for loss rates as it would generate a large

number of loss rates above unity. Our empirical tests on the data confirm these conjectures.

Other distributional candidates may also be considered from the prior literature (Madan and

Unal, 2004; Unal, Madan, and Guntay (2004), Kuritzkes, Schuermann, and Weiner, 2004). We

also provide additional empirical tests of these alternatives with respect to our proposed choices

and confirm the adequacy of the model we adopt.

4.1 Empirical Tests of the Distributional Models

For the distribution of asset sizes we use the asset sizes of 8694 banks in the US from the Call

Report Data for the year 2000. The loss rate data come from the failed bank data base maintained

at the FDIC for the period 1984− 2000. The number of failures were 1505 of which 32 had a zero

loss rate. Our analysis uses the 1473 failed banks with positive loss rates. Table 1 summarizes the

time series loss experience of the FDIC for the 1984−2000 period.1 It shows the yearly estimated

losses as a percentage of the total assets of the failed banks together with the number of failures

for six size categories. Three trends are observable. First, number of bank failures decline as

bank asset size increases. For example, only eight banks over $5 billion asset size failed during

1 The data on breakdown of losses by asset size categories for 1984 are not available in publicly available FDIC
documents,
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the sample period. Second, as asset size increases loss rates decline. For example, while average

loss rate for the smallest asset size group is about 25%, for the largest size group this average

percentage declines to about 8%. Finally, after 1992, there is a notable decline in the number of

bank failures.

The summary statistics on asset sizes and loss rates on failed banks are reported in Table 2.

We observe that for the asset size the mean is substantially above the median and in fact also

above the upper quartile, suggestive of a highly skewed and fat tailed distribution. This property

is also reflected in the large standard deviation. Furthermore the last percentile relative is 51

times the upper quartile. Hence, the Frechet distribution appears to be an appropriate choice.

We observe that the average loss rate for the 1984 − 2000 period is 21.1% of the assets. We

realize that this rate and the distribution of the loss rates obtained from the 1984− 2000 period

may not reflect the loss distribution faced by the FDIC in the next decade. One important

consideration is the prompt corrective action (PCA) provision of the FDICIA, which requires

regulatory intervention in advance of insolvency. Such mandate can substantially reduce expected

costs (Blinder and Wescott, 2001). However, we use this period to allow for the possibility of

adverse macro shocks experienced in the 1980s.

Table 2 shows that, the mean and median loss rates are fairly close with the mean in the

interquartile range. In addition, the last percentile is well below the unit loss rate and this

observation suggests a substantially thinner upper tail. Thus, the Weibull model with a shape

parameter above unity, appears a reasonable choice. The differences between the loss rate and

asset size data sets are quite marked and provides the early indication that it is not likely that

the two data sets come from the same distributional model.

Nevertheless, both the Frechet (equation 3) and Weibull (equation 4) models are estimated by

maximum likelihood on the asset size data scaled to $10 billions, for the 8649 banks in the year

2000. The parameter estimates for the Frechet are aF = 0.94002, cF = 0.005154 and the estimates

for the Weibull are aW = 0.5426, cW = 0.0204. For graphical convenience Figure (1) plots the
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histogram of the binned data in steps of $10 million up to $500 million. This segment contains

90% of the data.

We observe that the Frechet model fits the data better. It picks up the mode and the long tail

quite accurately. The Weibull on the other hand tries to get the long tail and as a consequence

is forced to place the mode at zero. The quality of the improvement of the Frechet over the

Weibull model is confirmed by Chi Square tests performed in the range of cells with more than 10

observations that go up to asset sizes of $700 million. The Frechet model could be improved upon

in the smaller asset sizes below $250 million. For the range from $250 million to $700 million we

have 43 degrees of freedom with the Frechet chi square statistic of 56.69 while the corresponding

Weibull value is 416.67. The respective p − values are .0787 for the Frechet and zero for the

Weibull.

For the loss rate data in addition to the Frechet and Weibull models we employ three other

distributions that have been used to describe loss distributions in the literature. These are the

Gaussian with parameters µG, σG, the Beta distribution with two parameters α, β and the logit-

normal with parameters µL, σL. The results are presented in Table 3.

Table 3 shows that the Beta and Weibull models dominate the Gaussian, Frechet and Logit

Normal as candidates for this distribution. The Weibull reflects a mode and an increasing hazard

rate with a fit that is marginally better than the Beta distribution. Figure (2) presents a graph

of the histogram of loss rates and the fitted distributions.

We observe from figure (2) the relative closeness of the Weibull and Beta model to each other

and the data (displayed as circles). The Gaussian model comes next followed by the Logit normal

and the Frechet. This visual ranking of the models is formally confirmed in the χ2 statistics and

corresponding p− values. For the latter we used 50 bins with more than 5 observations with the

resulting degrees of freedom being 48. The test statistics reported delete the bottom 10% of loss

rates and hence we have 38 degrees of freedom.
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5 Simulation Results

5.1 Design

A typical simulation run of traces the annual progression of the aggregate premium, loss levels and

the fund size at beginning of each year for 10 years for 1000 potential paths. The run produces

three 10 by 1000 matrices for the aggregate premium, annual loss level and beginning of year fund

size. The annual premiums are defined by equation (1). The aggregate annual loss amount is

generated by simulating a Poisson number of failures with mean arrival rate of λ = 20, for each of

which we simulate an asset size from the estimated Frechet distribution, and a loss rate from the

estimated Weibull distribution, with the aggregate annual loss being sum over the number of losses

of the product of the asset sizes and loss rates. The initial fund size for the next year is defined

by equation (2) using the premiums and losses that were generated for the year. On any path for

which the funds size reaches the bankruptcy level at the start of some year, the simulation on this

path is stopped with the fund size frozen at the bankruptcy level. For the default probability we

count the proportion of bankrupt states in the 1000 paths.

For the three components of the loss simulation, the number of failures, the associated asset

size and loss rate the details are as follows. For the Poisson number of losses we use the Poisson

random number generator from Matlab and generate Nnm the number of failures in year n on

path m with a constant arrival rate of λ = 20. This assumption of mean failure rate draws on the

failure experience of the FDIC during the post FDICIA period.

For each failure i ≤ Nnm, the asset size we generate a uniform random number u(i)nm for year n

on path m and simulate the asset size A(i)nm in accordance with the inverse cumulative distribution

method,

A(i)nm = cF

³
− ln

³
u(i)nm

´´− 1
aF .

where, αF = 0.94, cF = 0.0051.
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Similarly, for the loss rate associated with failure i , l(i)nm for year n on path m we generate

another independent sequence of uniform random variates v(i)nm with the loss rates now given by

the inverse Weibull cumulative distribution function

l(i)nm = cW

³
− ln

³
1− v(i)nm

´´ 1
aW .

where, αW = 1.7031, cW = 0.2404.

The aggregate annual loss amount for year n on path m, Lnm is then

Lnm =

NnmX
i=1

A(i)nml
(i)
nm.

Table 4 provides the simulated annual loss levels at three quantile points. We observe that the

total loss amounts for each path are below the yearly averages of the 1984−1992 period and above

the 1993− 2000 period. Hence, our simulation results depict a world composed of the mixture of

these two regimes the FDIC experienced post 1984.

The fund size at the start of year n on path m is Cnm. The loss amount for the year is Lnm.

The premium for the year on this path is

Pnm = κ

µ
max

µ
Cnm

C
, 1

¶¶−β
(1 + Lnm)

−γ

where the policy parameters κ, β, γ, C are prespecified. The fund size at the start of the next year

is then

Cn+1,m = Cnm + Pnm − Lnm.

The simulation on a path is stopped the first time Cn+1,m is below the bankruptcy threshold of

half a billion dollars.
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5.2 The Current State

Table 5 reports results for a number of base case alternatives where we assume no rebates and

existence of a flat premium structure. Case 1 shows that for the base year of 2000 the fund size

was 31 billion dollars with total domestic deposits of 3.3 trillion dollars. Assuming an effective

assessment rate of 0.23% generates a flat premium income of 7.65 billion dollars. This effective

assessment rate is the rate the FDIC needs to charge per 100 dollar deposits if the mandated

reserve to insured deposits is below 1.25%. For a flat premium structure with no countercyclical

features β and γ are zero in equation (1). For this setting of the simulation inputs, and given

the simulated losses we find that the default probability in 10 years is 6.7%. We should note that

currently, because the deposit insurance fund is above the 1.25% threshold, no insurance premium

is being collected, which puts the default probability above the 6.7% level.

For a target default probability in 10 years of 5% with no countercyclical features, one may

adjust upward the fund size or the aggregate premium level. Case 2 shows that keeping the

premium level of 7.65 billion dollars constant it takes a doubling of the fund size to 60 billion

dollars to reduce the 10 year default probability below 5%. Alternatively Case 3 demonstrates

that keeping the fund size at 31 billion dollars one may raise the level of premiums to 12.5 billion

dollars per year (or an effective assessment rate or .375%) to reduce this 10 year default probability

below 5%. Finally, Case 4 shows an intermediate possibility where the fund reserve is raised to

40 billion and the effective assessment rate is increased to .3156% to attain the target 5% default

probability.

The above simulations employ the same aggregate loss distribution over the ten years as the

random number seed is fixed. This distribution is made up of three components cumulated over

ten years, and these are the Poisson arrivals, the Frechet assets sizes, and Weibull loss rates each

year. We report now on the structure of the resulting aggregate loss distribution. One anticipates

that this distribution would be fat tailed given the presence of asset size draws from the Frechet.
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For such fat-tailed distributions it is customary to graph them on a log-log plot. Figure (3)

presents a plot of the logarithm of the complementary distribution function or the probability of

a large loss against the logarithm of the loss level. A linear graph is evidence of a power law and

a Pareto tail. We observe from this graph that the relationship is linear and the regression line

implies that

P (L > x) =
1.2887

L1.2163
(5)

from which we infer a 7.8% probability of a 100 billion dollar loss over the 10 years where L in

equation (5) is measured in units of 10 billion dollars. We suspect the large size of these losses

is driven to some extent by a uniform arrival rate for large and small bank loss arrival rates and

a uniform loss rate distribution independent of asset size. In subsequent revisions we anticipate

generalizing the model employed to allow for size dependent arrival rates as well as introducing a

negative dependence between between loss rates and asset sizes.

5.3 Countercyclical Trade-offs

We next explore the trade-offs inherent in the design of countercyclical premium systems. We

consider a number of sample premium schedules around the base scenario of Case 4 in Table 5

(C0 = $40 billion fund size and a flat premium level κ =$10.5 billion or an effective assessment

rate of .32% that gives a 5% 10 year default probability). The annual loss amounts for the 10

years over the 1000 paths is the same as the one summarized in Table 4.

First, we introduce rebates based on the level of aggregate losses. In other words, in terms of

Equation (1), we first assume β = 0. Suppose we wish to engineer roughly a 50% reduction in

the annual $10.5 billion premium level when aggregate losses are $5 billion. The value of γ that

satisfies the equation (50% = (1 + L)−γ), where L = .5, accomplishes this premium reduction.2

Thus γ = 1.7095. Such rebate increases the default probability of the fund from 5% to 6.3% at

2 We express $5 billion as .5 because our calculations are in terms of 10s of billion dollars.
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κ = $10.5 billion (no rebate zero-loss level annual premium).

We now ask what the effect is on the flat rate premium of introducing such a rebate if we

wish to bring back the default probability back to 5%. The flat rate premium associated with a

zero level of losses (κ) with loss-rebate structure in place, now rises to $16.5 billion or an effective

assessment rate of 0.50%, to maintain the target 10 year default probability at 5%. The actual

premium levels however are now indexed to the aggregate loss levels and Table 6 shows premium

and fund size for three paths of losses. We observe that premiums are lower when losses are high.

Table 6 also demonstrates how the design can operate. At the beginning of the period the

insuring agency announces that if the insurance fund does not experience any losses during the

year the aggregate premium charged at the end of the period is $16.5 billion. If aggregate losses

during the first year is $2.36 billion as in the 75th quartile outcome, then the aggregate premium

will be determined as 11.5 =
¡
1.65 ∗ (1 + .236)−1.7095

¢ ∗ 10. In other words, $2.36 billion loss level
causes the premium level to decrease by $5 billion, which reflects the loss rebate. In terms of

fund size, it starts at $40 billion, $11.5 billion premium collected and after $2.36 billion losses $49

billion fund reserve is accumulated.

One interesting observation with Table 6 is that the fund size keeps growing over time to

ensure a 5% default probability over ten years. We can adjust the premium structure such that

the fund level’s growth is slowed down but at the same time the target default probability remains

unchanged. One strategy is to collect higher premiums in early years leading to lower levels of

fund size in later years. Such design can be accomplished by augmenting the loss rebate with a

rebate system associated with the size of the fund. For this purpose we need to determine the

parameter β. A policy choice can be to determine the rate at which the excess fund level is to be

returned by premium reduction. For example, one choice could be that if the fund size rises to

$50 billion, a 25% increase, there will be a 36% rebate in the premiums (the $10 billion excess

fund size will be returned to the banking sector roughly in three years). Hence the premium

associated with an excess fund size of 25% is $6.72 billion. Such a rebate is organized by β = 2
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(.672 = 1.05 ∗ (1.25)−β).

With such a rebate system in place, naturally, the annual premium with no loss rebate and

for no excess capital state rises. For a 5% default probability target the aggregate premium is $15

billion. Table 7 shows the premium and fund size for a system where it has only rebates for excess

fund size but no rebates for losses. To illustrate the operation of the system we again use the

75th quartile results. The insuring agency announces that there will be a rebate of 36% for a 25%

fund excess size. At the end of the year 1, fund size equals the beginning size ($40 billion) plus

premium collections ($15 billion) less losses for the year ($2.36 billion). Thus end of year fund

size is approximately $53 billion. Since fund size is below the benchmark fund size (CB = 60) no

rebate will be given and the entire $15 billion is kept. Similarly, there will be no rebate for the

second year. However, the third year there is a rebate. The fund size starts with $66 billion. The

premium after rebate is approximately $12 billion
¡
15 ∗ (66/60)−2¢ . As a result ending fund size

is approximately $78 billion (beginning fund size of $66 billion plus $12 billion premium minus

$0.4 billion losses for the year).

As we can observe the fund size growth is slowed down relative to the results reported in Table

6. Table 8 brings together both loss and excess fund size rebates (γ = 0.5 and β = 2). Here, both

premium and fund size levels are higher relative to Table 7 but time series pattern follow that of

Table 7.

6 Conclusion

This paper provides a mechanism for exploring premium systems that are both responsive to

relief in times of crisis and build in a distribution of excess fund sizes while preserving a risk

based structure for determining aggregate premiums that ensure viability of the deposit insurance

system. For this purpose we study the distributions of assets sizes and loss rates and determine

that these are modeled well by the Frechet and Weibull families respectively. Risk Neutralization
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is seen to naturally occur as a consequence of system viability and results in a growth of the fund

size that sets the stage for building in capital rebates that are substantial as we go forward. It

remains to explore other criteria for system viability that are more directly connected with law

invariant risk measures. Also, we plan to introduce dependence of loss arrival rates and loss rate

distribution on asset sizes in the simulation.
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Table 1: Total assets, loss as a % of total assets, number of bank failures

Over 5 B 1-5 B 500M-1B 100-500M 50-100M Under 50M
1984 39, 957(7%) - 513(1%) 1, 345(13%) 419(16%) 1, 197(23%)

1 - 1 7 7 64
1985 5, 279(7%) 1, 075(9%) 454(22%) 1, 928(25%)

1 − − 5 6 108
1986 − 1, 589(14%) 598(23%) 1820(26%) 1468(25%) 2164(27%)

1 1 10 21 112
1987 − 1, 200(0%) 501(13%) 3, 284(26%) 1, 251(24%) 2, 993(27%)

1 1 15 18 168
1988 18, 162(11%) 10, 949(13%) 7, 717(9%) 10, 788(12%) 3, 560(15%) 3, 280(26%)

1 4 12 53 51 159
1989 7, 181(22%) 6, 932(22%) 4, 373(16%) 8, 739(14%) 1, 685(23%) 2, 695(25%)

1 3 6 37 25 135
1990 − 4, 144(9%) 1, 950(12%) 5, 703(24%) 1, 488(19%) 2, 455(20%)

2 3 26 22 116
1991 45, 591(3%) 9, 146(16%) 4, 619(22%) 5, 943(23%) 1, 535(18%) 1, 629(21%)

4 7 6 23 21 66
1992 7, 269(10%) 23, 704(5%) 3, 421(15%) 8, 304(10%) 1, 456(18%) 1, 334(18%)

1 9 6 32 20 54
1993 − 936(13%) 1, 389(20%) 582(21%) 621(20%)

1 7 8 25
1994 − − − 1, 217(12%) 77(23%) 111(10%)

7 1 5
1995 − − − 635(10%) 77(13%) 31(29%)

3 1 2
1996 − − − − 114(19%) 68(25%)

2 3
1997 − − − − − 26(19%)

1
1998 − − − 375(60%) − 53(8%)

1 2
1999 − 614(0%) − 115(9%) 157(27%) 61(10%)

1 1 2 3
2000 − − − 114(11%) 239(6%) 38(5%)

1 3 2
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Table 2: Asset Size and Loss Rate Summary Statistics

Asset Size ($Billions) Loss Rate (%)
Mean .751 21.10
Standard Deviation 10.0 12.97
Minimum .0013 .0053
Maximum 584 93.94
Median .084 19.63
Lower Quartile .042 11.64
Upper Quartile .188 28.80
First Percentile .008 .3084
Last Percentile 9.67 56.42

Table 3: Results on distributional models for loss rates

Model Parameter 1 Parameter 2 χ2 p-value (df=38)
Gaussian µG = 0.2066 σ = 0.1319 76.06 0.00024
Beta α = 1.8454 β = 6.7546 49.86 0.0942
Weibull αW = 1.7031 CW = 0.2404 48.13 0.1256
Frechet αF = 0.9814 CF = 0.109 570.46 0
Logit Normal µ = −1.5182 Σ = 0.7175 122.17 0
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Table 4: Simulated annual loss levels at three points of the aggregate loss over ten
years

Year 25th Quartile Median 75th Quartile
1 0.83 0.67 2.36
2 1.08 4.32 1.24
3 0.65 2.72 0.49
4 0.19 2.95 17.95
5 0.14 0.72 1.57
6 1.72 2 1.15
7 1.4 0.57 1.71
8 1.87 2.16 0.33
9 3.46 0.33 0.87
10 1.39 1.45 0.42
Sum 12.75 17.91 28.22

Table 5: Base case alternatives with no rebate system

Case 1 Case 2 Case 3 Case 4
Fund size ($billion) 31 60 31 40
Domestic deposits ($trillion) 3.3 3.3 3.3 3.3
Effective assessment rate (%) 0.23 0.23 0.38 0.32
Aggregate premium ($billion) 7.65 7.65 12.5 10.5
10-year default probability 6.7 5 5 5

Table 6: Annual premium and fund size with loss rebates only that ensures 5%
default probability

Assumed parameters are C0 = 40, CB = 40, K = 16.5, γ = 1.7095, β = 0.

25th Quartile 50th Quartile 75th Quartile
Year Premium Fund Size Premium Fund Size Premium Fund Size
1 14.4 53 14.8 54 11.5 49
2 13.9 66 8.9 59 13.5 61
3 14.8 80 10.9 67 15.2 76
4 15.9 96 10.6 75 2.8 61
5 16.1 112 14.6 88 12.8 72
6 12.5 123 12.1 99 13.7 85
7 13.2 135 15 113 12.6 96
8 12.3 145 11.8 122 15.6 111
9 9.9 152 15.6 138 14.3 124
10 13.2 164 13.1 150 15.4 139
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Table 7: Annual premium and fund size with capital rebates only that ensures 5%
default probability

Assumed parameters are C0 = 40, CB = 60, K = 15, γ = 0, β = 2.

25th Quartile 50th Quartile 75th Quartile
Premium Fund Size Premium Fund Size Premium Fund Size

1 15 54 15 54 15 53
2 15 68 15 65 15 66
3 11.6 79 12.8 75 12.2 78
4 8.6 88 9.6 82 8.8 69
5 7 94 8.1 89 11.3 78
6 6.1 99 6.8 94 8.7 86
7 5.5 103 6.1 99 7.2 92
8 5.1 106 5.5 103 6.4 98
9 4.8 107 5.1 108 5.6 103
10 4.7 111 4.7 111 5.1 107

Table 8: Annual premium and fund size with loss and capital rebates only that
ensures 5% default probability

Assumed parameters are C0 = 40, CB = 60, K = 19, γ = 0.5, β = 2.

25th Quartile 50th Quartile 75th Quartile
Premium Fund Size Premium Fund Size Premium Fund Size

1 18.2 57 18.4 57 17.1 55
2 18 74 15.9 69 18 71
3 11.9 86 12.6 79 13.1 84
4 9.2 95 9.5 86 5.8 72
5 7.6 102 8.9 94 12.3 83
6 6.1 106 7.1 99 9.5 91
7 5.6 111 6.8 105 7.6 97
8 5.1 114 5.6 109 7.2 104
9 4.5 115 5.7 114 6.1 109
10 4.8 118 4.9 118 5.6 114
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Figure 1: Asset Size Distributions on the Frechet and Weibull Models.
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Figure 2: Loss Rate Distributions on the Gaussian, Beta, Weibull, Frechet and Logit Normal
Models
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Figure 3: Aggregate Loss Rate Distribution Function. The graph plots logarithm of the compli-
menatry distribution function against the logarithm of the loss levels. In addition, regression line
and the estimate is shown.
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