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Overview and Main Themes

• Traditional models in asset pricing and dynamics governing asset prices do not incor-
porate default considerations. Could be considered a flaw.

• This is true in (i) term structure of defaultable debt, (ii) convertible bond pricing, and
(iii) individual equity options.
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Link Between Put Options and Credit Default Swaps

• There is clearly a link!.

• However, the argument must be tempered by the fact that most transaction volume for
individual equity options is concentrated in short-maturity options and near money op-
tions. Is it necessary to incorporate default over short-term? Are default-free dynamics
good enough approximation?

• Default may introduce additional risk-neutral skewness in individual equity return dis-
tributions. However, the risk-neutral skewness is much smaller in individual names
compared to the S&P index [Bakshi, Kapadia, and Madan (RFS 2003)]. May be more
relevant for names with high systematic risk.

• What is the precise contribution of default to risk-neutral volatility and risk-neutral skew-
ness [see Bakshi and Madan (Management Science, January 2007)]. Some empirical
and theoretical characterizations are necessary to tease out the impact of default.

• Summary: There is a far more compelling need to incorporate default in fixed income
contingent claims than in equities, especially at short-horizons.

3



Basic Starting Point

• Model the pre-default stock dynamics under an EMMQ as a one-dimensional diffusion:

dSt = [r(t)−q(t)+λ(St, t)]St dt +σ(St, t)St dBt, S0 = S > 0,

r, q, σ and λ are the short rate, dividend yield, volatility, and default intensity.

• If the diffusion can hit zero, they kill it at the first hitting time of zero, T0, and send it to
a cemetery (bankruptcy) state ∆, where it remains forever.

• Jump-to-default arrives at the first jump time ζ̃ of a doubly-stochastic Poisson process
with intensity λ(St, t). The time of default is ζ = min{T0, ζ̃}.

• Assume stock holders do not receive any recovery in the event of default.

• Addition of λ in the drift r−q+λ compensates for default to insure that the discounted
gain process to the stock holders is a martingale under the EMM.
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Corporate Bonds

• The time-t price of a defaultable zero-coupon bond with face value of $1 and no
recovery in default:

B(S, t;T ) = e−
R T
t r(u)duQ(S, t;T ),

where the (risk-neutral) survival probability is:

Q(S, t;T ) = E[e−
R T
t λ(Su,u)du1{T0>T}|St = S].

• In the above framework, they assumes that interest rate is deterministic. Needs to be
refined for fixed income claims (less of an issue for equity claims).

• The intensity function λ(St, t) depends only on St .
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A Tractable Class of Stock Price Processes

• Suppose pre-default stock price dynamics:

dSt = [r−q+λ(St)]St dt +σSt dBt, S0 = S > 0,

λ(S) =
α
Sp , α > 0, p > 0.

• Constant σ.

• This process cannot diffuse to zero. Time of default ζ is the first jump time of a doubly
stochastic Poisson process with intensity λ(S).

• λ(S)→ ∞ as S→ 0, making default inevitable at low stock prices.

• Obtain closed-form solutions in this model (V.L., “Pricing Equity Derivatives
subject to Bankruptcy,” Mathematical Finance, 2006, 16 (2), 255-282.

• Question: Why are the desirable features of restricting intensities to the class: λ(S) = α
Sp ?
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Innovations in Solution Techniques

• Computing expectations of the form:

VΨ(S,T ) = e−rTE
[
e−

R T
0 λ(St)dtΨ(ST )

]
.

• e−
R T

0 λ(St)dt can be removed by changing measure via Girsanov:

VΨ(S,T ) = e−qT S Ê
[
S−1

T Ψ(ST )
]
,

Ê is w.r.t. Q̂ under which B̂t := Bt−σt is a standard BM and

dSt = (r−q+σ2 +αS−p
t )St dt +σSt dB̂t, S0 = S > 0.

• The pre-default stock process under Q̂ can be represented as:

St = (β−1X (ν)
τ(t))

1
p ,

where X is a diffusion process

dXt = [2(ν+1)Xt+1]dt +2XtdWt, X0 = x = βSp,

β := pσ2/(4α), ν := 2(r−q+σ2/2)/(pσ2), τ(t) := p2σ2t/4.
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Representation in Terms of Asian Options

• With the transformations, the problem reduces to computing

VΨ(S,T ) = e−qT SE(ν)
x [(Xτ/β)−

1
pΨ((Xτ/β)

1
p)],

where E(ν)
x is w.r.t. the probability law of X starting at x = βSp.

• The process X is closely related to the problem of pricing Asian options (Geman and
Yor (1993), Donati-Martin and Yor (2001), Linetsky (2004)).

• The spectral expansion of the transition density of X is available in closed form, yield-
ing closed-form pricing formulas for corporate bonds and stock options in the form of
spectral expansions.
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Other Extensions for Intensity Processes

• Alternative intensity specification:

λ(S) =
c

ln(S/B)
, c > 0, B > 0, S > B.

This specification is similar to the one used in Madan and Unal (1998).
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Model with CEV Variance

• Pre-default stock dynamics:

dSt = [r(t)−q(t)+λ(St, t)]St dt +σ(St, t)St dBt, S0 = S > 0.

• To be consistent with the leverage effect, constant elasticity of variance (CEV)
volatility specification is also adopted:

σ(S, t) = a(t)Sβ,

β < 0 is the volatility elasticity and a(t) > 0 is the (time-dependent) volatility scale
parameter.

• To be consistent with the evidence linking credit spreads to stock price volatility, default
intensity — affine function of the instantaneous variance of the stock:

λ(S, t) = b(t)+ cσ2(S, t) = b(t)+ ca2(t)S2β, b(t)≥ 0, c > 0.

• Motivation for this class of λ(S, t)? Theoretical consistency?

• Peter Carr and V.L., “A Jump-to-Default Extended CEV Model: An Application of Bessel
Processes,” Finance and Stochastics, 10 (3), 303-330.
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Solutions Under Carr and Wu

• Affine SV model with default and stochastic rates (extenstion of Carr & Wu (2005) with
stochastic rates):

dSt = (rt−q+λt)Stdt +
√

VtStdW S
t ,

drt = κr(θr− rt)dt +σr
√

rt dW r
t ,

dVt = κV (θV −Vt)dt +σV
√

Vt dWV
t ,

dzt = κz(θz + γVt− zt)dt +σz
√

zt dW z
t ,

λt = zt +αVt +βrt,

dW S
t dWV

t = ρSV dt, ρSV < 0,

other correlations equal to zero.

• The model is affine and analytically tractable for European-style securities, incl. de-
faultable bonds and stock options, up to Fourier inversion.
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Big Picture Questions and Extensions

1. Theoretical work is innovative. Solutions are neat.

2. Theoretical justification for intensities.

3. General properties of risk-neutral densities of equity returns when fitted to options.

4. Empirical work is needed to assess different models. What differentiates different mod-
els?

5. Credit risk model comparisons.
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