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Abstract 

The Basel Committee on Banking Supervision recognizes that one of the 
greatest technical challenges to the implementation of the new Basel II 
Accord lies on the validation of the banks’ internal credit rating models 
(CRMs). This study investigates new proposals of statistical tests for 
validating the PDs (probabilities of default) of CRMs. It distinguishes 
between proposals aimed at checking calibration and those focused at 
discriminatory power. The proposed tests recognize the existence of 
default correlation, deal jointly with the default behaviour of all the ratings 
and, differently to previous literature, control the error of validating incorrect 
CRMs. Power sensitivity analysis and strategies for power improvement 
are discussed, providing insights on the trade-offs and limitations pertained 
to the calibration tests. An alternative goal is proposed for the tests of 
discriminatory power and results of power dominance are shown for them 
with direct practical consequences. Finally, as the proposed tests are 
asymptotic, Monte-Carlo simulations investigate the small sample bias for 
varying scenarios of parameters.  
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1. Introduction 
 

This paper studies issues of validation for credit rating models (CRMs). In this article, CRMs are 
defined as a set of risk buckets (ratings) to which borrowers are assigned and which indicate the 
likelihood of default (usually through a measure of probability of default – PD) over a fixed time horizon 
(usually one year). Examples include rating models of external credit agencies such as Moody’s and 
S&P’s and banks’ internal credit rating models.  

 

CRMs have had their relevance increased recently as the new Basel II accord (BCBS(2004)) allows 
the PDs of the internal ratings to function as inputs in the computation of banks’ regulatory levels of 
capital1. Its goal is not only to make regulatory capital more risk sensitive, and therefore to diminish the 
problems of regulatory arbitrage, but also to strengthen stability in financial systems through better 
assessment of borrowers’ credit quality.2 However, the great challenge for Basel II, in terms of 
implementation, lies on the validation of CRMs, particularly on the validation of bank estimated rating 
PDs3. 

 

In fact, validation of CRMs has been considered a difficult job due to two main factors. Firstly, the 
typically long credit time horizon of one year or so results in few observations available for 
backtesting.4 This means, for instance, that the bank/supervisor will, in most practical situations, have 
to judge the CRM based solely on 5 to 10 (independent) observations available at the database5. 
Secondly, as borrowers are usually sensitive to a common set of factors in the economy (e.g. industry, 
geographical region), variation of macro-conditions over the forecasting time horizon induces 
correlation among defaults. Both these factors contribute to decreasing the power of quantitative 
methods of validation. 

 

In light of that picture, BCBS(2005b) perceives validation of CRMs as necessarily comprising a whole 
set of quantitative and qualitative tools rather than a single instrument. This study focuses solely, 
however, on a particular set of quantitative tools, namely the statistical tests. Having in mind the 
aforementioned unavoidable difficulties, this paper scientifically examines the validation of CRMs by 
means of general statistical tests, not dependent on the particular technique used in their 
development6.  Furthermore, framework to be developed does not aim at a final prescription but at 
discussing the trade-offs, strategies and limitations involved in the validation task from a statistical 
perspective.  

 

Even restricting to general statistical tests, the judgment of the performance of a CRM is a 
multifaceted issue. It involves mainly the aspects of calibration and discriminatory power. Calibration is 
the ability to forecast accurately the ex-post (long-run) default rate of each rating (e.g. through an ex-
ante estimated PD). Discriminatory power is the ability to ex-ante discriminate, based on the rating, 
between defaulting borrowers and non-defaulting borrowers.  
 

                                                      
1. The higher the PD, the higher is the regulatory capital. 
2 On top of that, the transparency requirements contained in Basel II can also be seen as an important element aimed at 

enhancing financial stability. 
3 According to BCBS (2005b) validation is above all a bank task, whereas the supervisor’s role should be to certificate this 

validation. 
4 Notice that this problem is not present in the validation of market risk, where the time horizon is typically in the order of days. 
5 For statistical standards a small sample. 
6 This allows the discussions of this paper to assume a general nature. 
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As BCBS(2004) is explicit about the demand for banks’ internal models to possess good calibration, 
testing calibration is the starting point of this paper.7 According to BCBS(2005b), quantitative 
techniques for testing calibration are still on the early stages of development. BCBS(2005b) reviews 
some simple tests, namely, the Binomial test, the Hosmer-Lemeshow test, a Normal test and the 
Traffic Lights Approach (Blochwitz et. al. (2003)). These techniques have all the disadvantage of being 
univariate (i.e. designed to test a single rating PD per time) or to make the unrealistic assumption of 
cross-sectional default independency8. Further, they do not control for the error of accepting a 
miscalibrated CRM9. This paper presents an asymptotic framework to jointly test several PDs under 
the assumption of default correlation and controlling the previous error. The approach is close in spirit 
to Balthazar (2004), although here the testing problem formulation is remarkably distinct.  

 

Good discriminatory power is also a desirable property of CRMs as it allows rating based yes/no 
decisions (e.g. credit granting) to be taken with less error and therefore less cost by the bank (see 
Blochlinger and Leippold (2006) for instance). BCBS(2005b) comprehensively reviews some well 
established techniques for examining discriminatory power, including the area under the ROC curve 
(Engelmann et. al. (2003)), the Accuracy Ratio and the  Kolgomorov-Smirnov statistic.  

 

Although the use of the above mentioned techniques of discriminatory power is widespread in banking 
industry, two constraining points should be noted. First, the pursuit of perfect discrimination is 
inconsistent with the pursuit of perfect calibration in realistic CRMs. The reason is that to increase 
discrimination one would be interested in having, over the long run, the ex-post rating distributions of 
the default and non-default groups of borrowers as separate as possible and this involves having 
default rates as low as possible for good-quality ratings (in particular, lower than the PDs of these 
ratings) and as high as possible for bad-quality ratings (in particular, higher than the PDs of these 
ratings). See the appendix A for a graphical example. Second, although not remarked in the literature, 
usual measures of discriminatory power are function of the cross-sectional dependency between 
borrowers. This fact potentially represents an undesired property of traditional measures to the extent 
that the level and structure of default correlation is mainly a portfolio characteristic rather than a 
property intrinsic to the performance of CRMs10. The framework of this paper leads to theoretical tests 
of “discrimination power” that 1) can be seen as a necessary requisite to perfect calibration and 2) are 
not a function of the default dependency structure.  

 

This text is organized as follows. Section 2 develops a default rate asymptotic probabilistic model 
(DRAPM) upon which validation will be discussed. The model leads to a unified theoretical framework 
for checking calibration and discriminatory power. Section 3 discusses briefly the formulation of the 
testing problem for CRM validation. The discussion of calibration testing is contained in section 4.  
Theoretical aspects of discriminatory power testing are investigated in section 5. Section 6 contains a 
Monte–Carlo analysis of the small sample properties of DRAPM and their consequences for 
calibration testing. Section 7 concludes. 

                                                      
7 According to BCBS (2004), PDs should resemble long-run average default rates for all ratings. 
8 Most of them suffer from both problems. 
9 They control for the error of rejecting correct CRMs. 
10 It is not solely a portfolio characteristic because default correlation among the ratings potentially depends on the design of the 

CRM too. 
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2. The default rate asymptotic probabilistic model (DRAPM) 
 

The model of this section provides a default rate probability distribution upon which statistical testing is 
possible. It is based on an extension of the Basel II underlying model of capital requirement. In fact, 
this paper generalizes the idea of Balthazar(2004), of using the Basel II model for validation, to a 
multi-rating setting11,12. The applied extension is based on Demey et. al. (2004)13 and refers to 
including an additional systemic factor for each rating. While in Basel II the reliance on a single factor 
is crucial to the derivation of portfolio invariant capital requirements (c.f. Gordy (2003)), for validation 
purposes a richer structure is necessary to allow for non-singular variance matrix among the ratings, 
as it becomes clearer ahead in the section. 

 

The formulation of DRAPM starts with a decomposition of zin, the normalized return on assets of a 
borrower n with rating i. Close in spirit to Basel II model, zin is expressed as: 

zin = ρB
½ x + (ρW - ρB)½ xi  + (1- ρW )½ εin for each rating i=1…I and each borrower n=1..N. 

 

where x, xi, εij (i=1...I, j=1…N) are independent and standard normal distributed. Here, x represents a 
common systemic factor affecting the asset return of all borrowers, xi a systemic factor affecting solely 
the asset return of borrowers with rating i and εin an idiosyncratic shock. The parameters ρB and ρW lie 
in the interval [0 1]. Note that Cov(zin,zjm) is equal to ρW  if i=j and to ρB otherwise, so that ρW represents 
the “within-rating” asset correlation and ρB the “between-rating” asset correlation.  

 

The model description continues with the statement that a borrower j with rating i defaults at the end of 
the forecasting time horizon if zin < Φ-1(PDi) at that time, where Φ denotes the standard normal 
cumulative distribution function. Note that the probability of this event is therefore, by construction, 
PDi

14
. Consequently, the conditional probability of default PDi(x), where x=(x,x1,…,xI)’ denotes the 

vector of systemic factors, can be expressed by: 

 PDi(x) ≡ Prob(zin < Φ-1(PDi)|x) = Φ( (Φ-1(PDi) - ρB
½ x - (ρW - ρB)½ xi )/(1- ρW )½ ). 

 

Let’s focus now on the asymptotic behaviour of the observable default rates. Let DRiN denote the 
default rate computed using a sample of N borrowers with rating i at the start of the forecasting 
horizon. It is easy to see, as in Gordy (2003), that: 

 DRiN – E(DRiN|x) ≡ DRiN – PDi(x) → 0 a.s. when N → ∞15 

 

Therefore, as Φ-1 is continuous, it is also true that  

Φ-1(DRiN) – Φ-1(PDi(x)) → 0 a.s. when N → ∞ 

so that in DRAPM the Φ-1 transformed default rates have asymptotically the same distribution as the 
Φ-1 transformed  conditional probabilities, which are normal distributed16,17

.  

                                                      
11 This paper’s approach also differs from Balthazar(2004) in reversing the role of the hypothesis, as section 3 explains. 
12 The reader is referred to BCBS(2005a) for a detailed presentation of the Basel II underlying model. 
13 The purpose of Demey et. al. (2004) is to estimate correlations while the focus here is on developing a minimal non-

degenerate multivariate structure useful for testing. 
14 Without generalization loss, PDi is assumed to increase in i. 
15 a.s. stands for almost sure convergence. 
16 See the expression for PD(x). 
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More concretely, the limiting default rate joint distribution is: 

Φ-1(DR) ≈ N(µ, ∑) 

where DR = (DR1,DR2,…,DRI)T, µi = Φ-1(PDi)/(1- ρW )½ , ∑ij = ρW /(1- ρW) if i=j and ∑ij =ρB /(1- ρW) 
otherwise. 

 

This is the distribution upon which all the tests of this paper will be derived. A limiting normal 
distribution is mathematically convenient to the derivation of likelihood ratio multivariate tests. The cost 
to be paid is that the approach is asymptotic, so that the discussions and results of this paper are not 
suitable for CRMs with a small number of borrowers per rating, such for example rating models for 
large corporate exposures. Even for moderate numbers of borrowers, section 6 reveals that the 
departure from the asymptotic limit can be substantial, significantly altering the theoretical size and 
power of the tests. Application of the tests of the next sections should then be extremely careful. 
 

Some comments on the choice of the form of ∑ are warranted18. To the extent that borrowers of each 
rating present similar distributions of economic and geographic sectors of activity, that define the 
default dependency, ρB is likely to be very close to ρW, as this situation resembles the one factor case.  
By its turn, this paper assumes 0 < ρB < ρW, in opposition to ρB = ρW, in order to leave open the 
possibility of some degree of association between PDs and borrowers’ sectors of activity and with the 
technical purpose of obtaining a non-singular matrix ∑19,20. As a result, borrowers in the same rating 
behave more dependently than borrowers in different ratings, possibly because the profile of 
borrowers’ sectors of activity is more homogeneous within than between ratings. Indeed, a more 
realistic modelling is likely to require a higher number of asset correlation parameters and a portfolio 
dependent approach; therefore the choice of just a pair of correlation parameters is regarded here as 
a practical compromise for general testing purposes.  

 

This paper further assumes that the correlation parameters ρW and ρB are known. The typically small 
number of years that banks have at their disposal suggests that the inclusion of correlation estimation 
in the testing procedure is not feasible as it would diminish considerably the power of the tests. 
Instead, this paper relies on Basel II accord to extract some information on correlations21. By matching 
the variances of the non-idiosyncratic parts of the asset returns in Basel II and DRAPM models, ρW 
can be seen as the asset correlation parameter present in the Basel II formula22. For corporate 
borrowers, for example, Basel II accord chooses ρW ∈ [0.12 0.24] 23. Sensitivity analysis of the power 
of the tests on the choices of these parameters is carried out in section 4. It should be noted, however, 
that the supervisory authority may have a larger set of information to estimate correlations and/or may 
even desire to set their values publicly for testing purposes. 

 

                                                                                                                                                                      
17 Although the choice of the normal distribution for the systemic factors may seem arbitrary in Basel II, for the testing purposes 

of this paper it is a pragmatic choice. 
18 Note that the structure of ∑ defines DRAPM more concretely than the chosen decomposition of the normalized asset return, 

because the decomposition is not unique given ∑. 
19 To the best of the author’s knowledge, the empirical literature lacks studies on that association.  
20 Even if the bank or the supervisor is convinced of the appropriateness of ρB = ρW, the approach of this paper is still 
defendable, provided, for instance, the default rates of different ratings are computed based on distinct sectors of activity. 
21 An important distinction to the Basel II model, however, is that this paper does not make correlations dependent on the rating. 

In fact, the empirical literature on asset correlation estimation contains ambiguous results on this sensitivity.  
22 Note that Basel II can also be seen as the particular case of DRAPM when the coefficient of xi is null, i.e. when ρB  = ρW. 
23 On the other hand, Basel II accord doesn’t provide information on ρB because it is based on a single systemic factor. 
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Finally, it is assumed serial independency for the annual default rate time series. Therefore, the (Φ-1 

transformed) average annual default rate, used as the test statistic for the tests of the next sections, 
has the normal distribution above, with ∑/Y in place of ∑, where Y is the number of years available to 
backtest. According to BCBS(2005b), serial independency is less inadmissible than cross-sectional 
independency. 

 

 
3. The formulation of the testing problem 
 

Any configuration of a statistical test should start with the definitions of the null hypothesis Ho and the 
alternative one H1. In testing a CRM, a crucial decision refers to where the hypothesis “the rating 
model is correctly specified” should be placed?24 If the bank/supervisor only wishes to abandon this 
hypothesis if data strongly suggests it is false then the “correctly specified” hypothesis should be 
placed under H0, as in BCBS (2005b) or in Balthazar (2004)25. But if the bank/supervisor wants to 
know if the data provided enough evidence confirming the CRM is correctly specified, then this 
hypothesis should be placed in H1 and its opposite in Ho. The reason is that the result of a statistical 
test is reliable knowledge only when the null hypothesis is rejected, usually at a low significance level. 
The latter option is pursued throughout this paper. Thus the probability of accepting an incorrect CRM 
will be the error to be controlled for at the significance level α. To the best of the author’s knowledge 
this paper is the first to feature the CRM validation problem in this way. 

 

Placing the “correctly specified” hypothesis under H1 has immediate consequences. For a statistical 
test to make sense H0 usually needs to be defined by a closed set and H1, therefore, by an open set26. 
This implies that the statement that “the CRM is correctly specified” needs to be translated into some 
statement about the parameters PDis lying in an open set, in particular there shouldn’t be equalities 
defining H1 and the inequalities need to be strict. It is, for example, statistically inappropriate to try to 
conclude that the PDis are equal to the bank postulated values. In cases like that the solution is to 
enlarge the desired conclusion by means of the concept of an indifference region. The configuration of 
the indifference region should convey the idea that the bank/regulator is satisfied with the eventual 
conclusion that the true PD vector lies there. In the previous case the indifference region could be 
formed for example by open intervals around the postulated PDis. The next sections make use of the 
concept to a great extent. At this point it is desirable only to remark that the feature of an indifference 
region shouldn’t be seen as a disadvantage of the approach of this paper. Rather, it reflects more the 
reality that not necessarily all the borrowers in the same rating i have exactly the same theoretical PDi 
and that it is, therefore, more realistic to see the ratings as defined by PD intervals.27 

 

 

4. Calibration testing 
 

This section distinguishes between one-sided and two-sided tests for calibration. One-sided tests 
(which are only concerned about PDis being sufficiently high) are useful to the supervisory authority by 
allowing to conclude that Basel II capital requirements derived by the approved PD estimates are 
sufficiently conservative in light of the banks’ realized default rates. From a broader view, however, not 

                                                      
24 For this general discussion, one can think of “correctly specified” as meaning either correct calibration or good discriminatory 

power. 
25 Although they do not remark the consequences of this choice. 
26 H0 and H0 U H1 need to be closed sets in order to guarantee that the maximum of the likelihood function is attained.  
27 However, in the context of Basel II, ratings need not be related to PD intervals but merely to single PD values. In light of this 

study’s approach, this represents a gap of information needed for validation.  
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only excess of regulated capital is not desired by banks but also BCBS(2004) states that the PD 
estimates should ideally be consistent with the banks’ managerial activities such as credit granting and 
credit pricing28. To accomplish these goals, PD estimates must undistortly reflect the likelihood of 
default of every rating, something to be verified more effectively by two-sided tests (which are 
concerned about PDis being within certain ranges). Unfortunately the difficulties present in two-sided 
calibration testing are greater than in one-sided testing, as indicated ahead in the section. The 
analysis of one-sided calibration testing starts the section. 

 

Based on the arguments of the previous section about the proper roles of Ho and H1, the formulation of 
a one-sided calibration test is proposed below. Note that the desired conclusion, configured as an 
intersection of strict inequalities, is placed in H1.  

 

Ho: PDi ≥ ui for some i =1…I 

H1: PDi < ui for every i=1…I 

where  PDi  ≡ Φ-1(PDi) , ui ≡ Φ-1 (ui). (This convention of representing Φ-1 transformed figures in italic is 
followed throughout the rest of the text)29. 

 

Here ui is a fixed known number that defines an indifference acceptable region for PDi. Its value should 
ideally be slightly larger than the value postulated for PDi so that the latter is within the indifference 
region. Besides, ui should preferably be smaller than the value postulated for PDi+1 so that at least the 
rejection of H0 could conclude that PDi < postulated PDi+1.30,31  

 

According to DRAPM and based on the results of Sasabuchi (1980) and Berger (1989), which 
investigate the problem of testing homogeneous linear inequalities concerning normal means, a size α 
critical region can be derived for the test.32 

 

Reject H0 (i.e. validate the CRM) if 

iDR ≤ ui /(1- ρW )½ - zα (ρW /(Y(1- ρW))) ½  for every i = 1…I  

where 
Y

DR
DR

Y

y
iy

i

∑
== 1  is the (transformed) average annual default rate of rating i and  zα = Φ(1-α) is the 

1-α percentile of the standard normal distribution.33 

 

This test is a particular case of a min test, a general procedure that calls for the rejection of a union of 
individual hypotheses if each one of them is rejected at level α. In general the size of a min test will be 
much smaller than α but the results of Sasabuchi (1980) and Berger (1989) guarantee that the size is 

                                                      
28 More specifically, if the PDs used as inputs to the regulatory capital differ from the PDs used in managerial activities, at least 

some consistency must be verified between the two sets for validation purposes.  
29 As Φ-1 is strictly increasing, statements about italic figures imply equivalent statements about non-italic figures. 
30 As banks have the capital incentive to postulate lower PDs one could argue that PDi < postulated PDi+1 also leads to PDi < 

true PDi+1. 
31 Specific configurations of ui are discussed later in the section. 
32 Size of a test is the maximum probability of rejecting H0  when it is true. 
33 This definition of iDR  is used throughout the paper.  
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exactly α for the previous one-sided calibration test34. This means that the CRM is validated at size α if 
each PDi is validated as such.  

 

A min test has several good properties. First, it is uniformly more powerful (UMP) among monotone 
tests (Laska and Meisner (1989)), which gives a solid theoretical foundation for the procedure since 
monotonicity is generally a desired property.35 Second, as the transformed default rate variables are 
asymptotically normal in DRAPM, the min test is also asymptotically the likelihood ratio test (LRT). 
Finally, the achievement of size α is robust to violation of the assumption of normal copula for the 
transformed default rates (Wang et. al. (1999)) so that, for size purposes, the requirement of joint 
normality for the systemic factors can be relaxed. 

 

From a practical point of view it should be noted that the decision to validate or not the CRM does not 
depend on the parameter ρB, which is useful for applications since ρB is not present in Basel II 
framework and so there is not much knowledge about its reasonable values. However, the power of 
the test, i.e. the probability of validating the CRM when it is correctly specified, does depend on ρB. 
The power is given by the expression below. 

 

Power = ΦI(- zα + (u1 – PD1)/ (ρW /Y) ½,….,-zα + (ui – PDi)/ (ρW /Y) ½ , ….,-zα + (uI – PDI)/ (ρW /Y) ½, ρB /ρW ) 

where ΦI(….,ρB /ρW) is the cumulative distribution function of a Ith-variate normal of mean 0, variances 
equal to 1 and covariances equal to ρB/ρW. 

 

Berger (1989) remarks that if the ratio ρB /ρW is small then the power of this test can be quite low for 
the PDis only slightly smaller than uis and/or a large number of ratings I. This is intuitive as a low ratio 
ρB/ρW indicates that ex-post information about one rating does not contain much information about 
other ratings and so is less helpful to conclude for validation. On the other hand, as previously noted in 
section 2, DRAPM is more realistic when ρB/ρW is close to 1 so that the referred theoretical problem 
becomes less relevant in the practical case.   

 

More generally, it is easy to see that the power increases when PDis decrease, uis increase, Y 
increases, I decreases, ρB increases or ρW decreases36. In fact, it is worth examining the trade-off 
between the configuration of the indifference region in the form of the uis and the attained power. If 
high precision is demanded (uis close to postulated PDis) then power must be sacrificed; if high power 
is demanded then precision must be sacrificed (uis far from postulated PDis). Some numerical 
examples are analyzed below in order to provide further insights on this trade-off. 

 

The case I=1 represents an upper bound to the power expression above. In this case, for a desired 
power of β when the probability of default is exactly equal to the postulated PD, it is true that: 

u – PD = (zα - zβ )× (ρW /Y) ½
  

 

In a base case scenario given by Y=5, ρW  = 0.15, α = 15 % and β = 80 % the right hand side of the 
previous equation is approximately equal to 0.32. This scenario is considered here sufficiently 
conservative with a realistic balance between targets of power and size. In this case, it holds that:  

                                                      
34 More formally this is the description of a union-intersection test, of which the min test is a particular case when all the 

individual critical regions are intervals not limited on the same side.  
35 In the context of this paper, a test is monotone if the fact that average annual default rates are in the critical region implies that 

smaller average default rates are still in the critical region.  Monotonicity is further discussed later in the paper. 
36 Obviously the power also increases when the level α increases. 
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ui = Φ(0.32 + Φ-1(PDi)) 

 

Table 1 below displays pairs of values of ui and PDi that conform to the equality above. 

 

Table 1: ui X PDi. 

PDi(%) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

ui (%) 2 4 6 8 9 11 12 14 15 17 18 20 21 22 24 25 26 28 29 30 

 

 

As, in a multi-rating context, any reasonable choice of ui must satisfy ui ≤ PDi+1, table 1 illustrates, for 
the numbers of the base case scenario, an approximate lower bound for PDi+1 in terms of PDi

37,38. 
More generally, table 1 provides examples of whole rating scales that conform to the restriction PDi+1 ≥ 
ui, e.g. PD1=1%, PD2=2%, PD3=4%, PD4=8%, PD5=14%, PD6=22%, PD7=36%. Note that such 
conforming rating scales must posses increasing PD differences between consecutive ratings (i.e. 
PDi+1 - PDi increasing in i), a characteristic found indeed in the design of many real-world CRMs. 
Therefore DRAPM suggests a validation argument in favour of that design choice. Notice that this 
feature of increasing PD differences is directly related to the non-linearity of Φ, which in turn is a 
consequence of the asymmetry and kurtosis of the distribution of the untransformed default rate. 
 

To further investigate the feature of increasing PD differences and choices of u=(u1,u2,…,uI)’ in the 
one-sided calibration test, the cases I=3 and I=4 are explicitly analyzed in the sequence. For each I, 
four CRMs are considered with their PDis depicted in table 2. CRMs of table 2 can have PDis following 
either an arithmetic progression or a geometric progression. Besides, two strategies of configuration of 
the indifference region are considered: a liberal one with ui = PDi+1 and a more precise one with ui = 
(PDi+1 + PDi)/2. In order to allow for a fair comparison of power among distinct CRMs, PDis figures of 
table 2 are chosen with the purpose that the resulting sets of ratings of each CRM cover equal ranges 
in the PD scale. More specifically, this goal is interpreted here as all CRMs having equal u0 and uI

39,40.  

 

Table 2: PDs chosen according to ui specification and CRM design 

PDis follow arithmetic progression PDis follow geometric progression  

ui = PDi+1 ui = (PDi+1 + PDi)/2 ui = PDi+1 ui = (PDi+1 + PDi)/2 

I=3 1.22%, 11.82%, 22.42%  6.52%, 17.17%, 27.72% 1.22%, 3.66%, 11% 1.83%, 5.5%, 16.5% 

I=4  2%, 9.5%, 17%, 24.5% 5.75%, 13.25%, 20.75%, 28.25% 2%, 4%, 8%, 16% 2.66%, 5.33%,10.66%, 21.33% 

 

 

The power figures of the one-sided calibration test at the postulated PDs are shown in tables 3 and 4, 
according to values set to parameters ρW and Y. The values of these parameters are chosen 
considering three feasible scenarios: a favourable one characterized by 10 years of data and a low 

                                                      
37 Approximate because the computation was based on I=1. In fact the true attained power in a multi rating setup is smaller. 
38 The discussion of this paragraph assumes true PD = postulated PD. 
39 u0 corresponds to the fictitious PDo. At table 2, PDo can be easily figured out from the constructional logic of the PDi 

progression. 
40 For the construction of the CRMs of table 2, u0=1.22% and u3=33% for I=3 and u0=2% and u4=32% for I=4. Furthermore the 

ratio of the PDi geometric progression is set equal to 3 for I=3 and to 2 for I=4. 
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within-rating correlation of 0.12, a unfavourable one characterized by the minimum number of 5 years 
prescribed by Basel II (c.f.Basel (2004)) and a high ρW at 0.18 and an in-between scenario41. 

 

Table 3: Power comparison among CRM designs and ui choices, I=3 
ρB/ρW = 0.8, α= 0.15 

PDis follow arithmetic progression PDis follow geometric progression  

ui = PDi+1 ui = (PDi+1 + PDi)/2 ui = PDi+1 ui = (PDi+1 + PDi)/2 

ρW = 0.12, Y=10 0.97 0.57 0.99 0.95 

In-between  0.85 0.42 0.97 0.81 

ρW =0.18, Y=5 0.72 0.33 0.91 0.67 

 

 

Table 4: Power comparison among CRM designs and ui choices, I=4 
ρB/ρW = 0.8, α= 0.15 

PDis follow arithmetic progression PDis follow geometric progression  

ui = PDi+1 ui = (PDi+1 + PDi)/2 ui = PDi+1 ui = (PDi+1 + PDi)/2 

ρW = 0.12, Y=10 0.82 0.39 0.95 0.68 

In-between  0.62 0.28 0.81 0.48 

ρW =0.18, Y=5 0.49 0.22 0.65 0.37 

 

 

Table 3 and 4 show that CRMs with the feature of increasing (PDi+1 - PDi) usually achieve significantly 
higher levels of power than CRMs with equally spaced PDis, confirming the intuition derived from table 
1. The tables also reveal that, even when solely focusing on the former, more demanding 
requirements for ui (c.f. ui = (PDi+1 + PDi)/2) may produce overly conservative tests, with for example 
power on the level of only 37%. Therefore liberal strategies for ui (c.f. ui = PDi+1) seem to be necessary 
for realistic validation attempts and attention is focused on these strategies to the remainder of this 
section. Further from the tables, the power is found to be very sensitive to the within-rating correlation 
ρW and to the number of years Y. It can increase more than 80% from the worst to the best scenario 
(c.f. last column of table 4).  

 

While in previous tables the between-rating correlation parameter ρB is held fixed, tables 5 and 6 
examine its effect, along a set of feasible values, on the power of the test. Power is computed at the 
postulated PDs of CRMs of table 2 with ui = PDi+1, I=4 and for the in-between scenario of parameters 
of ρW and Y. The tables show just a minor effect of ρB, regardless of the size of the test and the CRM 
design. Therefore, narrowing down the uncertainty in the value of ρB value is not of great importance if 
just approximate levels of power are desired at postulated PDs. The elements that indeed drive the 
power of the test are unveiled in the next analysis.  

                                                      
41 As ρB/ρW is fixed in tables 3 and 4, what matters for the power calculation is just the ratio (ρW/Y). Therefore, the in-between 

scenario can be thought as characterized by adjusting both Y and ρW or just one of them. At tables 3 and 4 it is given by 
(ρW/Y) ½ = 0.15. 
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Table 5: Effect of ρB when PDis follow arithmetic progression 
ui = PDi+1, (ρW/Y)1/2 =0.15, I=4 

 

 

 

 

 

 

Table 6: Effect of ρB when  PDis follow geometric progression  
ui = PDi+1, (ρW/Y)1/2 =0.15, I=4 

 

 

 

 

 

 

 

Tables 7 and 8 below provide insights on the relative role played by the different ratings on the power. 
Power is computed at postulated PDs for a sequence of four embedded CRMs, starting with the CRM 
with equally spaced PDs of the second line of table 7 (the CRM with increasing PD differences of the 
second line of table 8). Each next CRM in table 7 (table 8) is built from its antecedent by dropping the 
less risky (riskiest) rating. Power is computed for the in-between scenario and ui = PDi+1. The tables 
reveal that, as the number of ratings diminishes, the power increases just to a minor extent, provided 
the riskiest (less risky) ratings are always kept in the CRM. Thus it can be said that in table 7 (table 8) 
the highest (lowest) PDis drive the power of the test. This is partly intuitive because the highest 
(lowest) PDis correspond to the smallest differences (ui - PDi) in the CRMs of table 7 (table 8) and 
because distinct PDis contribute to the power differently just to the degree their differences (ui - PDi) 
vary42. The surprising part of the result refers to the degree of relative low importance of the dropped 
PDis: the variation of power between I=1 and I=4 can be merely around 10%. This latter observation 
should be seen as a consequence of the functional form of DRAPM, particularly the choice of the 
normal copula for the (transformed) default rates and the form of Σ.   

 

Table 7: Influence of distinct PDis on power 

PDis follow arithmetic progression; ρB/ρW = 0.6; (ρW /Y) ½ = 0.15; ui = PDi+1 

PDis α=5% α=10% α=15%

2%, 9.5%, 17%, 24.5% 0.32 0.47 0.58 

9.5%, 17%, 24.5% 0.32 0.47 0.58 

17%, 24.5% 0.34 0.49 0.59 

24.5% 0.44 0.58 0.68 

                                                      
42 It is easy to see that for the CRMs with equally spaced PDis, (ui – PDi) is trivially constant in i but the Φ-1-transformed 

difference (ui – PDi) decreases in i. For the CRMs with increasing (PDi+1 – PDi,), (ui – PDi) trivially increases in i and the Φ-1-
transformed difference (ui – PDi) increases in i too. 

 α=5% α=10% α=15%

ρB/ρW = 0.6 0.32 0.47 0.58 

ρB/ρW = 0.7 0.35 0.50 0.60 

ρB/ρW = 0.8 0.38 0.52 0.62 

ρB/ρW = 0.9 0.41 0.55 0.65 

 α=5% α=10% α=15%

ρB/ρW = 0.6 0.54 0.69 0.78 

ρB/ρW = 0.7 0.56 0.71 0.79 

ρB/ρW = 0.8 0.60 0.73 0.81 

ρB/ρW = 0.9 0.62 0.74 0.82 
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Table 8: Influence of distinct PDis on power 

PDis follow geometric progression; ρB/ρW = 0.6; (ρW /Y) ½ = 0.15; ui = PDi+1 

PDis α=5% α=10% α=15%

2%, 4%, 8%, 16% 0.54 0.69 0.78 

2%, 4%, 8% 0.54 0l.69 0.78 

2%, 4% 0.56 0.71 0.79 

2% 0.65 0.77 0.84 

 

 

A message embedded in the previous tables is that in some quite feasible cases (e.g. Y=5 years 
available at the database, ρW = 0.18 reflecting the portfolio default volatility, α < 15% desired) the one-
sided calibration test can have substantially low power (e.g. lower than 50% at the postulated PD). 
Another related problem refers to the test not being similar on the boundary between the hypotheses 
and therefore biased (if I>1)43. To cope with these deficiencies, the statistical literature contains some 
proposals of non-monotone uniformly more powerful tests for the same problem, such as in Liu and 
Berger (1995) and Dermott and Wang (2002). The new tests are constructed by carefully enlarging the 
rejection region in order to preserve the size α. The enlargement trivially implies power dominance. 
The new tests have two main disadvantages though. First, from a supervisory standpoint, non-
monotone rejection regions are harder to defend on an intuitive basis because they imply that a bank 
could pass from a state of validated CRM to a state of non-validated CRM if default rates for some of 
the ratings decrease. Second, from a theoretical point of view, Perlman and Wu (1999) note that the 
new tests do not dominate the original test in the decision theoretic sense because the probability of 
validation under H0 (i.e. when the CRM is incorrect) is also higher for them44. The authors conclude 
that UMP tests should not be pursued at any cost, particularly at the cost of intuition. This is the view 
adopted in this study so that the new tests are not explored further in this paper.  

 

Yet, one may try to include some prior knowledge in the formulation of the one-sided calibration test 
as a strategy for power improvement. Notice, first, that the size α of the test is attained when all but 
one of the PDis go to 0 while the remaining one is set fixed at ui

45,46. This is probably a very unrealistic 
scenario against which the bank or the supervisor would like to be protected. The bank/supervisor 
may alternatively remove by assumption this unrealistic case from the space of PD possibilities and 
rather consider that part of the information to be tested is true. Notably, it can be assumed that the 
postulated PDi-1, not 0, represents a lower bound for PDi, for every rating i. A natural modification of 
the test consists then on replacing zα by a smaller constant c > 0 to adjust to the removed unrealistic 
PD scenarios47, with resulting enlargement of the critical region and achievement of a more powerful 
test48. Hence, c is defined by the requirement that the size of the modified test (with c instead of zα) in 
the reduced PD space is α. Similarly to Sasabuchi (1980), the determination of c needs the 
examination of only the PD vectors with all but one of their coordinates PDis equal to their lower 

                                                      
43  A test is α similar on a set A if the probability of rejection is equal to α everywhere there. A test is unbiased at level α if the 

probability of rejection is smaller than α everywhere in H0 and greater than α everywhere in H1.  Every unbiased test at level 
α with a continuous power function is α-similar in the boundary between H0 and H1. (Gourieroux & Monfort (1995)) 

44 More specifically, the power is higher at every PD parameter in H0.  
45 This limiting PD vector is in H0 and, therefore, should not be validated. It has a probability of validation equal to α.  
46 Note PDi → 0 ⇒ PDi → -∞ 
47 As the coordinates of the input to the power function cannot go to infinity as before, -c > -zα for the size to be achieved. 
48 See the definition of the critical region in the beginning of the section. 
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bounds (the postulated PDi-1s), and the remaining one, say PDj, set at uj, for j varying in 1…I. More 
formally, 

 

Max 1≤j≤I (ΦI(-c + (u1 – PD0)/ (ρW /Y) ½ , ….,-c, …,-c + (uI – PDI-1)/ (ρW /Y) ½ ; ρB /ρW ) = α49,50, 

from which the value of c can be derived. 

 

However, produced results indicate the previous modification approach is of limited efficacy to power 
improvement51. On the other hand, one may also try to derive the LRT based on the restricted PD 
parameter space: 

 

Ho: PDi ≥ ui for some i =1…I and PDi ≥ postulated PDi-1 for every I=1…I52 

H1: PDi < ui for every i=1…I and PDi ≥ postulated PDi-1 for every I=1…I53 

 

The LRT will differ from the modification approach with respect to the information contained in the 
observed default rates. The LRT will have very small observed average default rates providing lower 
relative evidence in favour of H1, because, by assumption, they cannot be explained by very small 
PDs54. Accordingly, the null distribution of the likelihood ratio (LR) statistic doesn’t need to put mass 
on those unrealistic PD scenarios. Unfortunately, to the best of the author’s knowledge, the derivation 
of the LRT critical region for such a problem is lacking in the statistical literature. Its complexity arises 
from the facts that, in contrast to the original one-sided calibration test, H0 and H1 do not share the 
same boundary in |RI and that the boundary indeed shared is a limited set. Thus, it is reasonable to 
conjecture that the null distribution of the LR statistic will be fairly complicated.  

 

The section now comments on two-sided calibration testing, mostly from a theoretical perspective. 
Similarly to the one-sided version, the hypotheses of a two-sided test can be stated as follows. 

 

Ho: PDi ≥ ui or  PDi ≤ li for some i =1.. I 

H1:  li < PDi < ui for every i=1…I 

 

Now the acceptable indifference region is defined by two parameters ui and li for each rating i, with 
ideally li ≥ postulated PDi-1 and ui ≤ postulated PDi+1. Under that formulation, the test belongs to the 
class of multivariate equivalence tests, which are tests designed to show similarity rather than 
difference and are widely employed in the pharmaceutical industry to demonstrate that drugs are 
equivalent.55 Berger and Hsu (1996) comprehensively review the recent development of equivalence 
tests in the univariate case (I=1). The standard procedure to test univariate equivalence is the TOST 

                                                      
49 PD0  is here just a lower bound to PD1.  It could be  -∞ or defined subjectively based on accumulated practical experience.  
50 Note that the new critical region will now depend on ρB and that the calculation of c needs some computational effort. 
51 Produced results indicate that the power increase is relevant only in the region of small (probably unrealistic) ratio ρB/ρW or for 

ambitious choices of ui (i.e. close to PDi). In the latter case, the increase is not sufficient, however, to the achievement of 
reasonable levels of power because the original levels are already too low (c.f. table 1 for example). Those results are 
consistent with the intuition derived from the analysis of tables 7 and 8. 

52 Same observation about PD0 applies here as well. 
53 H1 need not be defined only by strict inequalities here since the union H0 U H1 does not span the full |RI. 
54 Very small observed average default rates in the sense that Φ-1(DRi)/(1- ρW )½ < Φ-1(postulated PDi-1). 
55 More specifically, those tests are referred as bioequivalent tests in the pharmaceutical industry. 
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test (two one-sided tests - called this way because the procedure is equivalent to performing two size-
α one sided tests and concluding equivalence only if both reject). Wang et.al. (1999) discuss the 
extension of TOST to the multivariate case, making use of the intersection-union method. When 
applied to the DRAPM distribution, that extension results in the following critical region for the two-
sided calibration test56. 

 

Reject Ho (i.e. validate the CRM) if  

li /(1- ρW )½ + zα (ρW /(Y(1- ρW))) ½   ≤ iDR  ≤ ui /(1- ρW )½ - zα (ρW /(Y(1- ρW))) ½  for every i = 1…I 

 

As the maximum power of the test occurs in the middle point of the cube [li  ui]I, it is reasonable to 
make the cube symmetric around the postulated PD (in other words, to make ui - PDi = PDi - li for 
every i), so that the highest probability of validating the CRM occurs exactly at the postulated PD. 
Additional configurations of the indifference region may include, as in the one-sided test, choosing ui = 
PDi+1 or li=PDi-1 (but not both).  

 

Similarly to the one-sided test, the two-sided version has similar problems of lack of power and bias57. 
In this respect, the statistical literature contains some proposals for improving TOST (Berger and 
Hsu(1996), Brown et. al.(1997)), which are again subject to criticism from an intuitive point of view by 
Perlman and Wu (1999)58. Furthermore, an additional drawback of the two-sided test, in contrast to 
the original TOST, is its excess of conservatism because the test is only level α (Berger and Hsu 
(1996)) while its size may be much smaller.59,60 That observation indicates the magnified difficulty in 
performing two-sided calibration testing.  

 

Two yet different approaches to testing multivariate equivalence deserve comments. The first one is 
developed by Brown et. al.(1995). Applied to the problem of PD calibration testing, it consists of 
accepting an alternative hypothesis H1 (i.e. validating the CRM) if the Brown confidence set for the PD 
vector is entirely contained in H1. The approach would allow the bank or the supervisor to separate the 
execution of the test from the task of defining an indifference region because H1 configuration could be 
discussed at a later stage, after the knowledge of the form of the set. In particular, the confidence set 
can be seen as the smallest indifference region that still permits to validate the calibration. Brown et.al. 
(1995) propose an optimal confidence set in the sense that, if the true PD vector is equal to the 
postulated one, then the expected volume of that set is minimal, which means that, in average terms, 
maximal precision is achieved when calibration is exactly right61. The cost of this optimality is larger 
set volumes for PDs different from the postulated one. Munk and Pfluger (1999) show in simulation 
exercises that the power of Brown’s procedure can be substantially lower than those of more standard 
tests, like the TOST, for a wide range of PDs close to the postulated one. Therefore, in light of the 
view of this paper that ratings could more realistically be seen as PD intervals, the benefit of the 

                                                      
56 The standard TOST is formulated assuming unknown variance while the proposed two-sided calibration test of this paper 

assumes known variance. Therefore the reference to the term TOST encompasses here some freedom of notation. 
57 If I>1, the test is not similar on the boundary between the hypotheses and therefore biased. 
58 However, in the case of calibration testing with known variance, the bias is not as pronounced as in the standard TOST with 

unknown variance. 
59  It can be shown that the degree of conservatism depends on ρB. 
60 The reason for the discrepancy with the standard TOST relates to the impossibility of making the variance go to 0 as in Berger 

and Hsu (1996). 
61 The form of the set is not an ellipse, commonly found in multivariate analysis, but rather a figure known as the Limaçon of 

Pascal. 
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optimality at a single point is doubtful at a minimum. Consequently, Brown’s approach is regarded 
here as of more theoretical than practical value to calibration testing.62,63 

 

The second different approach to testing multivariate equivalence is developed by Munk and Pfluger 
(1999). So far, this paper has just considered rectangular sets in the H1 statements of the calibration 
tests. The goal has been to show that the true PD lies in a rectangle or in quadrant of the space |RI. 
The referred authors analyze instead the use of ellipsoidal alternatives for the multivariate equivalence 
problem, which, for purposes of calibration testing, can be exemplified as follows. 

 

Ho: etDe ≥ ∆ 

H1: etDe < ∆ 

where e = PD – postulated PD, D is a positive definite matrix, that conceives a notion of distance in 
|RI, and ∆ denotes a fixed tolerance bound. D and ∆ define an indifference region for PD.  

 

Munk and Pfluger (1999) advocate this formulation to allow the notion of equivalence to be interpreted 
as a combined measure of several parameters (e.g. a combination of the PDis, i=1…I). As a 
consequence, this implies that very good marginal equivalence (e.g. the true PD1 is very close to the 
postulated PD1) should allow larger indifference regions for the other parameters (e.g. the other PDis). 
Conceptually though, this point is hard to justify in the validation of CRMs unless miscalibration were 
necessarily derived from a systematic erroneous estimation of all the PDis. Nevertheless, the view of 
this paper is that miscalibration could be rather rating specific. Furthermore, note that the rectangular 
alternatives already permit a lot of flexibility in allowing different indifference interval lengths for 
different ratings. Consequently, for purposes of calibration testing, ellipsoidal alternatives are regarded 
here more as a practical complication.64  

  
 

5. Tests of rating discriminatory power 
 

One of the most traditional measures of discriminatory power is the area under the ROC curve 
(AUROC)65. Let n and m be two distinct random borrowers with probabilities of default PDn and PDm, 
respectively. Following Bamber(1975), AUROC is defined as: 

 

AUROC= Prob(PDn > PDm | n defaults and m doesn’t) + ½ Prob(PDn = PDm | n defaults and m doesn’t) 

 

High values of AUROC (close to 1) are typically interpreted as evidence of good CRM discriminatory 
performance. However, the definition of AUROC as the probability of an event makes it a function not 
only of the PD vector but also of the default correlation structure66. To the extent that the CRM should 
not be held accountable for the effect of default dependency between borrowers, the AUROC 

                                                      
62 Note also that DRAPM  should be seen just an approximation to reality, so that, even if all borrowers in a rating have exactly 

the same PD, small deviations from the DRAPM assumptions may in practice distort the optimality at the true PD point. 
63 Other confidence set approaches to calibration testing are also possible. Some of them are, however, dominated by the 

multivariate TOST (Munk and Pflunger (1999)). 
64 However, for purposes of power improvement, it might be still useful to investigate ellipsoidal alternatives inscribed or 

approximating rectangular alternatives. This investigation is not addressed at this paper. 
65 ROC = Receiver Operating Characteristic curve (c.f. Bamber (1975)). 0 ≤ AUROC ≤ 1. 
66 It is a function of the distribution of borrowers along the ratings too. 
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measure of discrimination becomes distorted.67 The next proposition shows explicitly the dependency 
of AUROC on the asset correlation parameters. 

 

Proposition: Consider an extension of DRAPM in which (ρij) is the matrix of asset correlations 
between borrowers of ratings i and j, i,j =1…I. Let P(i,j) denote the probability of two random borrowers 
having ratings i and j and P(i) the probability of one random borrower having rating i.  Then: 
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Proof: Appendix B. 

 

The remainder of this section describes alternative proposals of tests of rating discriminatory power 
built upon the DRAPM distribution. The qualifying term rating is added purposefully to the traditional 
expression “discriminatory power” to emphasize that the property desired to be concluded/measured 
here is different from that embedded in traditional measures of discriminatory power. Rather than 
verifying that the ex-post rating distributions of the default and non-default groups of borrowers are as 
separate as possible, the proposed tests of rating discriminatory power aim at showing that PDi is a 
strictly increasing function of i. In other words, the discriminatory power should be present at the rating 
level or, more concretely, low quality ratings should have larger PDis. Note that this is a less stringent 
requirement than correct two-sided calibration and the alternative hypothesis here will, therefore, 
strictly contain the H1 of the two-sided calibration test68. In this sense, the fulfilment of good rating 
discriminatory power is consistent with the pursuit of correct calibration. Furthermore, as the proposed 
tests are based on hypotheses involving solely the PD vector, they are not function of default 
correlations; consequently they address the two pitfalls of traditional measures of discriminatory power 
that were discussed in the introduction. Finally, showing PD monotonicity along the rating dimension is 
also useful to corroborate the assumptions of some methods of PD inference on low default portfolios 
(e.g. Pluto & Tasche (2005)). 

 

This section distinguishes between a test of general rating discriminatory power and a test of focal 
rating discriminatory power. The former addresses a situation where the bank or supervisor is 
uncertain about the increasing PD behaviour along the whole rating scale whereas the latter focuses 
on a pair of consecutive ratings. 

 

The formulation of the general test is proposed below. 

Ho: PDi ≥ PDi+1 for some i =1…I-1 

H1: PDi < PDi+1 for every i=1…I-1 

 

By viewing PDi+1 - PDi as the unknown parameter to be estimated (up to a constant) by DRi+1  - DRi for 
every rating i, the previous test involves testing strict homogeneous inequalities about normal 

                                                      
67 Note that, in the contrast, the definition of good calibration is always purely linked to the good quality of the PD vector, 

although the way to empirically conclude that will typically depend on the default correlation values, as shown in section 4. 
68 Provided ui < li+1 for i=1…I-1, as expected in practical applications. 
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means69. So, similarly to the one-sided calibration test, a size-α likelihood-ratio critical region can be 
derived. 

 

Reject H0 (i.e. validate the CRM) if 

ii DRDR −+1 > zα (2(ρW-ρB)/(Y(1- ρW))) ½  for every i = 1…I-1 

 

It is worth noting above that, opposed to the calibration tests, there is no need to the configuration of 
an indifference region, as the desired H1 conclusion is already defined by strict inequalities. On the 
other hand, now the critical region and, therefore, the decision itself to validate the CRM depends on 
the unknown parameter ρB. The Basel II case (ρB =ρW) represents the extreme liberal situation where 
just an observed increasing behaviour of the average annual default rates along the rating dimension 
is sufficient to validate the CRM (regardless of the confidence level α) whereas the case ρB =0 places 
the strongest requirement in the incremental increase of the default rate averages along the rating 
scale70. In practical situations, the bank or the supervisor may want to determine the highest value of 
ρB such that the general test still validates the CRM and then check how this value conforms to its 
beliefs about reality. 

 

When compared to the power of the one-sided calibration test, the power of the general test is notably 
affected by a trade-off of two factors71. First, the fact that now the underlying normal variables are 
likely to have smaller variances (Var(DRi+1-DRi)=2(ρW-ρB)/(1- ρW) < Var(DRi)=ρW/(1- ρW), provided 
ρB/ρW > 1/2) contributes to an increase in power. On the other hand, the now not positive underlying 
correlations ( Corr(DRi+1-DRi, DRj-DRj-1)= -1/2 if i=j and 0 otherwise, compared to Corr(DRi,DRj)=ρB/ρW 
> 0 for i≠j ) contributes to a decrease in power72. The resulting dominating force is to be determined by 
the particular choices of ρB and ρW. In general, the same comments on possible strategies for power 
improvement and their limitations apply here as well.  

 

It is also worthwhile to discuss the situation where the bank or the supervisor is satisfied by the 
“general level” of rating discrimination except for a particular pair of consecutive ratings. Suppose the 
bank/supervisor wants to find evidence that two consecutive ratings (say ratings 1 and 2, without loss 
of generality) indeed distinguish the borrowers in terms of their creditworthiness. From a supervisory 
standpoint, a suspicion of regulatory arbitrage may for instance motivate the concern.73 To examine 
this issue, this section formulates a test of focal rating discriminatory power, whose hypotheses are 
stated as follows.74 

 

Ho: PD1 = PD2 ≤ PD3 ≤….≤ PDI  

H1: PD1 < PD2 ≤ PD3 ≤….≤ PDI 

 

                                                      
69 The key observable variables are now default rate differences between consecutive ratings, rather than the default rates 

themselves, as in the one-sided calibration test. 
70 This is again intuitive as low values of ρB  mean that  ex-post information about one rating  does not contain much information 

about other ratings. 
71 Similarly to the calibration case, the power expression can be easily derived. 
72 Therefore, not necessarily validating rating discriminatory power is easier than validating (one-sided) calibration. 
73 Suspicion of regulatory arbitrage may derive from a situation where large credit risk exposures are apparently rated with 

slightly better ratings so that the resulting capital charge of Basel II is diminished. 
74 The discussion of this section is easily generalized to the situation where more than one pair of consecutive ratings are to 

have their rating discriminatory power verified. 
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From a mathematical point of view, the development of the likelihood ratio test for such a problem is 
more complex than the majority of the tests considered so far in this paper, because now the union of 
the null and the alternative hypotheses do not span the full |RI neither the hypotheses share a 
common boundary. But, in contrast to the section 4 one-sided calibration LRT under PD restriction, 
now both H0 and H1 are convex cones. This implies that the null distribution of the LR will depend on 
the structure of the cone C = Ho U H1, whether obtuse or acute with respect to norm induced by ∑-1. 
75,76 In the first case, the LR statistic follows a χ2 bar distribution under H0 (Menendez et. al.  
(1992a)).77 In the second case, the distribution of the LR statistic is unknown but the test is dominated 
in power by a reduced test comprised of testing just the different parts of the hypotheses Ho and H1 
(Menendez and Salvador (1991), Menendez et. al. (1992b)). It can be shown that the structure of ∑ 
adopted in this paper makes the cone C acute, so that the second case is the relevant one.78 The 
reduced dominating test takes the form below. 

 

Ho: PD1 = PD2  

H1: PD1 < PD2  

 

The test above is just a particular case of the general rating discriminatory power test with I=2. 
Accordingly, its rejection rule is given as follows. 

Reject H0 (i.e. validate the CRM) 

 if 12 DRDR − > zα (2(ρW-ρB)/(Y(1- ρW))) ½  

 

The dominance of the focal test by a reduced test is a surprising result and was long considered an 
anomaly of the LR principle (see e.g. Warrack and Robertson (1984)). In the context of CRMs this 
means that, in order to judge the discriminatory performance of a particular pair of consecutive ratings, 
the bank or the supervisor would be in a better position if it simply disregards the prior knowledge of 
the performance of the other ratings. But how can less information be better? Only most recently 
Perlman and Wu (1999) showed that indeed the overall picture was not so much in favour of the 
“dominating” test, arguing that the latter presents controversial properties. For example, it rejects PDs 
closer to H0 than to H1

79. Nevertheless, the practitioner does not have another choice besides using 
the power dominating test, because, as just observed, the null distribution of the LRT statistic for the 
focal test is unknown. Having that in mind, the analysis of this section provides the theoretical 
foundation to an easy-to-implement and only procedure available: restrict the attention to the 
problematic pair of ratings. More interestingly however, a generalization of the results discussed in this 
section suggests a uniform procedure to check rating discriminatory power: select the ratings whose 
discriminatory capacity are at stake and apply the general test to them. 

                                                      
75 See (reference) for the definitions of those cone types. 
76 xxx T 1

1
−

Σ
Σ=−

 

77 Although χ2 bar distributions are common in the theory of order-restricted inference (Robertson et. al. (1988)), application of 
the focal test in this circumstance is not very practical as the determination of both the LRT statistic and the p-values are 
computer intensive. 
78 This is true because ai’Σaj ≤ 0, i≠j, where the ai’s  (ai = (0,…,-1,1,…,0)’ ) generate the linear restrictions defining the cone C.  
More specifically, it is true that ai’Σaj = (ρB - ρW)/(1 - ρW) if  |i-j| = 1 or 0 if |i-j| ≥ 2. See the mentioned references for further details. 
May more general but still realistic variance structures Σ  lead to a different conclusion is an interesting question not addressed 
in this paper. 
79 Perlman and Wu (1999) conclude once again that UMP size-α tests should not be pursued at any cost. 
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 6. Small sample properties 
 

All the tests discussed in this paper are based on the asymptotic distribution of DRAPM, which 
assumes an infinite number of borrowers for each rating. This section analyses the implications to the 
performance of the one-sided calibration test of a finite but still large number of borrowers (N=100 is 
chosen as the base case)80. Due to the strong reliance of the test on the asymptotic normality of the 
marginal distributions of DRAPM, it is important to verify how the real marginals compare to the 
asymptotic ones81. The focus on a particular marginal allows then, for the sake of clarity, to restrict the 
attention to the case I=182. Hence this section conducts Monte-Carlo simulations of DRAPM, at the 
stage in which idiosyncratic risk is not yet diversified away83 and for I=1, N=100 and Y=5, unless 
stated otherwise.84 Based on a large set of simulated average annual default rates, the effective 
significance level is computed as a function of the nominal significance level α, for varying scenarios 
of the parameters true PD and ρW

85. 
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where the probability is estimated by the empirical frequency of the event and DR  denotes a 
particular simulation result. 

 

The effective level measures the real size of the asymptotic size-α one-sided test. Alternatively, since 
it is expressed in the form of a probability of rejection, the effective level can also be seen as the real 
power at the postulated PD, when the asymptotic power is equal to α, of an asymptotic size δ one-
sided test, with δ < α86. From both interpretations, the occurrence of effective levels lower than 
nominal levels means that the test is more conservative, with a smaller probability of validation in 
general than what is suggested by the analysis of section 4 based on DRAPM. Effective levels higher 
than nominal levels indicates the opposite: a small sample liberal bias. 

 

A general important finding derived from the performed simulations is that the convergence of the 
lower tails of the (transformed) average default rate distributions to their normal asymptotic limits is 
slower and less smooth than in the case of the upper tails, for realistic PD values of87. The situation is 
illustrated by the following pair of graphs calculated based on the scenario PD=3%, ρW=0.20, N=100 
and Y=5. The blue line represents the effective confidence level for each nominal level depicted at the 
x-axes while the green line is the identity function merely denoting the nominal level to facilitate 

                                                      
80  The analysis is restricted to the one-sided calibration test not only because it is the main focus of this paper but also because 

the small sample properties of discriminatory tests are more complex to analyse as distributions of default rate differences 
are involved. Also, as perceived later in the section, the issues of most concern related to the small-sample properties of the 
two-sided calibration test derive from the analysis of the one-sided case. 

81 Review the form of the critical region in section 4. 
82 The issue of how the normal copula is distorted by the reality of a finite number of borrowers is not addressed in this version 

of the paper. 
83 In other words, before N → ∞. 
84 Recently developed credit risk analytical methods to approximate distribution tails, such as the granularity adjustment, are not 

applicable here, as this paper deals with non-linear (Φ-1) transformed default rate distributions. 
85 In general 200000 simulations are run for each scenario. 
86 More specifically, it is easy to see that δ = Φ(-zα - (u – PD)/(ρW/Y )½) 
87 The intuitive reason for this being that Φ-1(PD) → -∞  when PD → 0. 
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comparison. Note that the effective level is much farther from the nominal value in the lower tail of the 
distribution (depicted on the right-hand graph) than in the upper tail (depicted on the left-hand graph). 
In particular, if the one-sided calibration test is employed at the nominal level of 10%, the test will be 
much more conservative in reality, as the effective size will be approximately only 4%88. 

 

Graph 1: Lower and upper tails,  
PD=3%, ρW=0.20 N=100,Y=5 

 

 

Indeed, the fact that the lower tail is less well behaved is strongly relevant to this paper’s one-sided 
calibration test. Under the approach of placing the undesired conclusion in H0 (e.g. PD ≥ u), rejection 
of the null, or equivalently validation, is obtained if average default rates are small, so that the one-
sided test is based in fact on the lower tail of the distribution. On the contrary, the upper tail would be 
the relevant part of the distribution had the approach of placing the “CRM correctly specified” 
hypothesis in H0 been adopted, as in BCBS(2005b). Since convergence of the upper tail is more well 
behaved, the small sample departure from the normal limit would be smaller in this case. In the view of 
this paper this would be, however, a misleading property of the latter approach89.  

 

The main numerical findings regarding the small sample power performance of the one-sided 
calibration test are described in the sequence, based on the analysis of the simulated lower tails. The 
investigation starts with the effect of the true PD on the effective confidence level. Graphs 2 and 3 
reveal that, in the region of 0%<PD<10% and 0.15<ρW<0.20, as PD increases, the test evolves from 
having a conservative bias (true power smaller than the asymptotic one) to having a liberal bias (true 
power larger than the asymptotic one). At PD=4% for ρW = 0.20 or at PD=3% for ρW = 0.15 the small 
sample bias is approximately null as the test matches its theoretical limiting values. On the other hand, 
in the region of 10%<PD<15% and 0.15<ρW<0.20, as PD increases, the blue line comes back a bit 
closer to the green one, i.e. the test diminishes its liberal bias (but not sufficiently so as to turn 
conservative). 

                                                      
88 There is less mass in the simulated lower tail than in the respective tail of the DRAPM distribution. 
89 Because the worse relative behaviour of the lower tail would not be revealed. 
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Graph 2: Effect of PD, 
ρW=0.20 N=100,Y=5 

 
 

Graph 3: Effect of PD, 
ρW=0.15, N=100,Y=5 

 

 

As the asymptotic one-sided test based on DRAPM already suffers from problems of lack of power, 
this section suggests, as possible general recommendation, to consider real (unmodified) applications 
of the test solely in the cases where the small sample analysis indicates a non-conservative bias. 
Indeed, if instead an additional layer of conservatism is added to the already conservative asymptotic 
test, the resulting procedure test may hardly validate at all. The restriction to the small sample liberal 
cases rules out, for example, according to graphs 2 and 3, validation of low PDs (e.g. PD ≤ 3%). 
Consequently, a possible practical advice is to apply the test only to the remainder of the postulated 
PD vector (e.g. ratings 3 to 7 in the example related to table 1). Alternatively, a higher nominal level α 
could be applied to the low PDs. 

 

The influence of correlation and the number of years under the base case of N=100 are analyzed in 
graphs 4 and 5. As the within-rating asset correlation ρW increases, the test evolves from a liberal bias 
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to a small conservative one. Note that this represents a second channel, now through the small 
sample properties, by which ρW diminishes the power of the test. The effect of an increase in the 
number of years, in the region of 1 to 10 years, is to smooth considerably the distribution lower tail, 
although the direction of convergence is not clearly established. Results not shown also indicate that 
as N increases beyond 100, the blue and green lines come closer at every graph, as expected. 

 

Graph 4: Effect of ρW  
PPDD==55%%, Y=5, N=100 

 

 

Graph 5: Effect of Y 
PD=5%, ρW=0.20 N=100 

 

 

Finally it is important to observe that, even if the one-sided test could be totally based on the simulated 
distributions of this section, there would still be some extreme cases where validation is virtually 
impossible at traditional low confidence levels. When Y=1 (c.f. graph 6) or true PD=1%, for example, 
the lower tail of distribution is quite discrete and presents significant probability of zero defaults. As a 
result, the effective confidence level jumps several times and assumes only a small finite number of 
values in the lower tail. When Y=1 the first non-zero effective level is already approximately 15%; after 
that, the next value is approximately 30%. Therefore, validation at 5% or 10% significance level is not 
possible. Hence, Basel II prescription of a minimum of 5 years of data is important not only to increase 
the asymptotic power of the test, according to section 4, but also to remove the quite problematic 
small sample behaviour of the lower tail.  
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7. Conclusion 
 

This study contributes to the CRM validation literature in introducing new ways to statistically address 
the validation of credit rating PDs.  Firstly, it proposes new formulations for H0 and H1 in order to 
control the error of accepting an incorrect CRM. Secondly, it provides an integrated treatment of all 
ratings at once. Finally, it provides a unified framework for testing calibration and rating discriminatory 
power. All these aspects are interlinked with the development of a probabilistic asymptotic normal 
model for the average default rate vector that recognizes default correlation. Important empirical and 
practical consequences derive from these proposals as outlined in the following paragraphs. 

 

On calibration testing, the relative roles played by the distinct elements that affect the power are 
unveiled for the one-sided version. The feature of increasing PD differences between consecutive 
ratings, found in many real-world CRMs, and, particularly, the choice of liberal indifference regions are 
shown to be important to the achievement of reasonable levels of power. On the other hand, the 
correlation between the ratings, whose calibration is not present in Basel II, possesses only a minor 
effect on power. Also, appropriately restricting the set of PDs to be tested may do a job almost as 
good as the original test in terms of power.  A general message of the analysis is, however, that the 
power of the one-sided calibration test is unavoidably and substantially low in some cases. Regarding 
this issue, strategies of power improvement are discussed suggesting limited efficacy or 
inappropriateness. Additionally, the paper discusses the conceptual problems of applying modern 
ideas in multivariate equivalence to two-sided calibration testing.  

 

As far as discrimination is concerned, a new goal of rating discriminatory power is established for 
CRMs. In contrast to traditional measures of discrimination, the new aimed property is less stringent 
than the requirement of perfect calibration and is not dependent on default correlation. Results of 
uniform power dominance provide a theoretical foundation for restricting the investigation of the 
desired property just to the pairs of consecutive ratings whose discriminatory capacity are at stake 
and, therefore, lead to an easy-to-implement procedure. 

 

The understanding of the implications of DRAPM to validation also includes an analysis of its small 
sample properties. As a matter of fact, DRAPM has the disadvantage of being an asymptotic model 
whose small sample properties may introduce a significant additional layer of test conservatism 
besides the asymptotic one. Monte Carlo simulations show that this will likely be the case for small 
PDs (e.g. PD ≤ 3%) or small number of years (e.g. Y ≤ 5) in the one-sided calibration test. A possible 
recommendation is to rule out real (unmodified) applications of that test in those cases. On the other 
hand, when a liberal small sample bias is present, it may counterbalance the nominal conservatism, 
although some caution should always be exercised in the analysis.  

 

Above all, the bank or the regulator should not demand much from statistical testing of CRMs. Even 
under the simplifying assumptions of DRAPM, the power of the tests of this paper, as well as other 
tests discussed in the literature, is negatively affected by the unavoidable presence of default 
correlation and by the small length of default rate time series available in banks’ databases. Possibly 
due to this reason, BCBS(2005b) perceives validation as comprising not only quantitative but also 
somewhat qualitative tools. It is likely, for example, that the investigation of the continuous internal use 
of PDs/ratings by the bank may uncover further evidence, although subjective, supporting or not the 
CRM validation. Nonetheless, this paper supports the view that the possibility of reliance on qualitative 
aspects opened by the Basel Committee should not dampen the incentives to extract as much 
quantitative feedback as possible from statistical testing, including a quantitative sense of its 
limitations. 

 
 
 



  24/27 
 

8. References 
 

Balthazar, L. (2004), “PD Estimates for Basel II”, Risk, April 2004. 

Bamber, D. (1975), “The area above the ordinal dominance graph and the area below the receiver 
operating graph”, Journal of Mathematical Psychology, 12, 387-415. 

Basel Committee on Banking Supervision (2004), “International Convergence of Capital Measurement 
and Capital Standards: A Revised Framework”, Bank for International Settlements. 

Basel Committee on Banking Supervision (2005a), ”An Explanatory Note on the Basel II IRB Risk 
Weight Functions”, Bank for International Settlements. 

Basel Committee on Banking Supervision (2005b), ”Studies on the Validation of Internal Rating 
Systems”, Bank for International Settlements. 

Berger, R. L. (1989), “Uniformly More Powerful Tests for Hypotheses Concerning Linear Inequalities 
and Normal Means”, Journal of the American Statistical Association, Vol. 84, No. 405. 

Berger, R. L. and J. C. Hsu (1996), “Bioequivalence Trials, Intersection-Union Tests and Equivalence 
Confidence Sets”, Statistical Science, Vol. 11, No. 4. 

Blochlinger, A. and M. Leippold (2006), “Economic Benefit of Powerful Credit Scoring”, Journal of 
Banking and Finance, 30. 

Blochwitz, S., S. Hohl, D. Tasche and C. Wehn (2004), “Validating Default Probabilities on Short Time 
Series”, Working Paper. 

Brown, L. D., G. Casella and G. Hwang (1995), “Optimal Confidence Sets, Bioequivalence and the 
Limaçon of Pascal”, Journal of the American Statistical Association, Vol. 90 No. 431. 

Brown, L. D., G. Hwang and A. Munk (1998), “An Unbiased Test for the Bioequivalence Problem” The 
Annals of Statistics, Vol. 25.  

Demey P., J. F. Jouanin, C. Roget and T. Roncalli (2004), “Maximum Likelihood Estimate of Default 
Correlations”, Risk, November 2004. 

Engelmann, B. E. Hayden and D. Tasche (2003), “Testing Rating Accuracy”, Risk, January 2003. 

Gordy, M. B. (2000), “A Comparative Anatomy of Credit Risk Models”, Journal of Banking and 
Finance, 24 (1-2), p.119-149. 

Gordy, M. B. (2003), “A Risk-Factor Model Foundation for Ratings-Based Bank Capital Rules”, Journal 
of Financial Intermediation, Vol. 12, No. 3.  

Gourieroux, C. and A. Monfort (1995), “Statistics and Econometric Models”, Themes in Modern 
Econometrics, Cambridge University Press. 

Laska, E, M. and M. J. Meisner (1989), “Testing Whether an Identified Treatment is Best”, Biometrics, 
45.  

Liu, H. and R. L. Berger (1995), “Uniformly More Powerful, One-Sided Tests for Hypotheses about 
Linear Inequalities”, The Annals of Statistics, Vol. 23, No. 1. 

Mc.Dermott M. P. and Y. Wang (2002), “Construction of Uniformly More Powerful Tests for 
Hypotheses about Linear Inequalities”, Journal of Statistical Planning and Inference, 107.  

Menéndez, J. A. and B. Salvador (1991), “Anomalies of the Likelihood Ratio Test for Testing 
Restricted Hypotheses”, The Annals of Statistics, Vol. 19, No. 2. 

Menéndez, J. A., C. Rueda and B. Salvador (1992a), “Testing Non-Oblique Hypotheses”, 
Communications in Statistics - Theory and Methods, 21(2). 

Menéndez, J. A., C. Rueda and B. Salvador (1992b), “Dominance of Likelihood Ratio Tests under 
Cone Constraints”, The Annals of Statistics, Vol. 20 No. 4. 

Munk, A. and R. Pfluger (1999), “1-α Equivariant Confidence Rules for Convex Alternatives are α/2-
level Tests – with Applications to the Multivariate Assessment of Bioequivalence”, Journal of the 
American Statistical Association, Vol. 94, No. 448. 



  25/27 
 

Perlman, M.D. and L. Wu (1999), “The Emperor’s New Test“, Statistical Science, Vol.14, No. 4. 

Pluto, K. and D. Tasche (2005), “Thinking Positively”, Risk, August 2005. 

Robertson, T, F. T. Wright and R. L. Dykstra (1988), “Order Restricted Statistical Inference”, John 
Wiley & Sons 

Sasabuchi, S. (1980), “A Test of a Multivariate Normal Mean with Composite Hypotheses Determined 
by Linear Inequalities”, Biometrika, 67, 2. 

Shapiro, A. (1988), “Towards a Unified Theory of Inequality Constrained Testing in Multivariate 
Analysis”, International Statistical Review, 56, 1. 

Vasicek, O. (2002),”Loan Portfolio Value”, Risk, December 2002. 

Wang, W., J. T. G. Hwang and A. Dasgupta (1999), ”Statistical tests for multivariate bioequivalence”, 
Biometrika, 86, 2. 

Warrack, G. and T. Robertson (1984), “A Likelihood Ratio Test Regarding Two Nested but Oblique 
Order-Restricted Hypotheses”, Journal of the American Statistical Association, Vol. 79, No. 388. 

 



  26/27 
 

9. Appendix 
 

Appendix A 

 

The figure below should be interpreted as a result over the long run and displays a rating model with 
perfect discrimination but not perfect calibration. The bars’ heights represent the magnitude of the ex-
post default rate for each rating. All borrowers classified as C to E defaulted whereas all borrowers 
classified as A to B survived. If this is the regular behaviour of this CRM, knowing beforehand the 
rating of the obligor allows one to predict default or not default with certainty (perfect discriminatory 
power). The red line indicates the ex-ante PD estimate for each rating. Ratings A and B had 0% 
default rate, thus lower than the ex-ante prediction. Ratings C to E had 100% default rate, thus higher 
than the ex-ante prediction. The CRM is therefore not correctly calibrated. Obviously this example 
represents an extreme case (because realistic CRMs don’t have perfect discriminatory power) but it is 
useful to illustrate that, although both characteristics are desirable, they may well be inconsistent as 
they are aimed at their best. 

 
 
 
 
 
 
 
 
 
 
 
 

Appendix B 

 

Proof of proposition. 

 

The fist parcel of the AUROC definition can be expressed as follows. 
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where the last equality derives from the expression for a joint probability of default and non-default implicit in a 

DRAPM style model (c.f. Gordy(2000)). Similarly, the second parcel of the AUROC definition can be expressed as 
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and the proposition is proved. 

 


